A new study now shows that microRNA-25 is a new molecular switch that is activated in the overworked heart to drive the onset of heart failure.
Heart failure is the progressive decline
in heart’s contractile function, and is commonly caused by a number of
cardiovascular diseases including hypertension, atherosclerosis, and many
others1. These cardiovascular conditions hinder cardiac function,
and can cause the heart to work harder to meet oxygen and nutrient demands in
the body.
The resulting chronic build-up of the heart’s ventricles, known as
cardiac pressure overload, can contribute to the thickening of heart muscles in
the ventricular wall, and the onset of contractile dysfunction2.
Although it remains unclear as to how cardiac pressure overload can contribute
to contractile dysfunction in the heart, current studies suggest that the
culprit lies in the misregulation of intracellular calcium in cardiac myocytes3,4.
MicroRNA 25. Source: NIH
Cardiac myocytes are heart cells
that undergo synchronous and rhythmic contractions to drive the beating of the
heart. These contractions are triggered by the release of intracellular calcium
in a process known as excitation-contraction coupling. In this process, electrical
stimulation triggers the depolarization of cardiac myocytes, which in turn
drives voltage-dependent calcium influx via the L-type calcium channels,
followed by the calcium-dependent release of intracellular calcium from the
sarcoplasmic reticulum (SR) via ryanodine receptors1,5.
The released
calcium binds to calcium-responsive switches known as troponins and tropomyosins
that activate myofilaments, which are actin-myosin assemblies, to produce
contractions in cardiac myocytes1,5. While the release of
intracellular calcium triggers cardiac myocyte contractions, the active
recycling of calcium back into the SR is necessary to terminate contraction in
cardiac myocytes and to allow for muscle relaxation 5.
In order to maintain a constant rhythm of
cardiac muscle contraction and relaxation, the released calcium needs to be
actively recycled back into the SR via a calcium-transporting ATPase pump known
as SERCA2A. The constant balance of intracellular calcium release and recycling
is crucial for sustaining constant cardiac muscle contractions in the steady
beating of the heart5.
One of the most prominent features of cardiac myocytes in heart failure is the downregulation of SERCA2A, which impairs calcium recycling in the SR3,4. Interestingly, cardiovascular diseases are also associated with the downregulation of microRNAs6, which are small RNA sequences that selectively inhibit gene transcription by binding to the 3’untranslated region (UTR) of target messenger RNAs. An interesting question is whether microRNAs might serve as molecular switches that are activated by cardiac pressure overload to trigger heart failure, and whether these microRNAs work by shutting down intracellular calcium recycling in cardiac myocytes.
In the March 12th online issue of Nature, Wahlquist et al7 discover that microRNA-25 (miR-25) upregulation
is associated with cardiac pressure overload in cardiovascular diseases, and is
implicated in driving SERCA2A downregulation and the onset of heart failure.
The study involves using a genome wide approach to establish that miR-25 is
upregulated in human cases of heart failure, as well as in an established mouse
model of heart failure triggered by transaortic constriction (TAC).
The study
shows that miR-25 can specifically inhibit SERCA2A expression by targeting the
3’UTR of SERCA2A messenger RNA, and that injection of miR-25-expressing viral
vectors in vivo can suppress SERCA2A expression in mouse cardiac myocytes, and
consequently disrupt the calcium kinetics involved in cardiac contractions.
Furthermore, the inhibition of miR-25 function using antagomirs, which are
small engineered oligonucleotides that prevent miR-25 from inhibiting SERCA2A
expression, can effectively restore SERCA2A expression and prevent the onset of
heart failure in mice following TAC.
The study suggests that miR-25 is a
SERCA2A repressor that is aberrantly expressed in response to cardiac pressure
overload, and is responsible for calcium misregulation in cardiac myocytes, and
consequently contractile dysfunction and heart failure.
The discovery of miR-25-SERCA2A
pathway provides the first mechanistic link between cardiovascular diseases and
heart failure. The study shows that the cardiac pressure overload in
cardiovascular diseases can actively suppress the heart’s contractile function
by activating miR-25 expression- a molecular switch that triggers the onset of
heart failure by upsetting the calcium recycling process in cardiac myocytes. A
recent model suggests that the balance in intracellular calcium release and reuptake
in cardiac myocytes depends on the heart’s workload, and that this balance is
maintained by a complex intracellular network 8.
Since microRNAs are
known to fine-tune complex biological processes by suppressing the expression
of key protein modulators9, the study by Wahlquist et al7
provides the first compelling evidence that microRNAs may be part of an
intracellular network that controls the calcium balance in cardiac myocytes in
relation to the heart’s workload. The study here will pave the way towards
further studies to understand how the microRNA network regulates the delicate
balance between workload and contractility in the heart, and how this balance
is disrupted in cardiovascular diseases.
Heart failure is the leading cause
of illness and death among the aging population. Although angiotensin
inhibitors are the prevalent drug to treat heart failure, there is an urgent
need to novel drugs to effectively combat heart failure particularly at its
advanced stages10. As an answer to that need, recent preclinical and
clinical studies have since demonstrated that gene therapy to restore SERCA2A
expression is an effective way to reverse heart failure11,12.
Following along these footsteps, Wahlquist et
al introduces miR-25 antagomirs as an effective way to reverse heart
failure by inhibiting miR-25-mediated SERCA2A suppression.
MicroRNAs are very
attractive therapeutic targets in a drug development standpoint mainly because
they are short RNA sequences that can be easily isolated and manipulated13,
a feature that can help streamline the development of antagomir-based
therapeutics. Moreover, the highly conserved nature of microRNAs can also
streamline the transition of therapeutic antagomirs from rodent to human
studies. Therefore, the development of miR-25 antagomirs to treat heart failure
is an ideal strategy to rapidly generate the much needed treatment for heart
failure, and to pave the way towards developing microRNAs as a new class of
therapeutics to effectively treat this deadly disease.
References:
1. Bers, D. M. Excitation–Contraction Coupling and Cardiac Contractile Force edn 2 (Kluwer Academic,
Dordrecht, Netherlands, 2001).
2. Esposito G. et al. Circulation. 105, 85-92 (2002)
3. Ver Heyen M. et al. Circ Res. 89, 838-46 (2001)
4. Meyer, M. et al. Circulation 92, 778–784 (1995).
5. Bers DM. Nature. 415, 198-205. (2002)
6. Ikeda, S. et al. Physiol. Genomics 31, 367–373 (2007).
7. Wahlquist, C. et al. Nature. in press (2014)
8. Greenstein, J. L.&Winslow, R. L. Circ. Res. 108, 70–84 (2011).
9. Bartel, D. P. Cell. 136, 215–233 (2009).
10. Mudd, J. O.&Kass, D. A. Nature. 451, 919–928 (2008).
11 Jessup, M. et al. Circulation 124, 304–313 (2011).
12. Kawase, Y. et al. J. Am. Coll. Cardiol. 51, 1112–1119 (2008).
13. van Rooij E, Purcell AL, Levin AA. Circ Res. 110, 496-507. (2012)
Comments