Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a novel electrolyte for use in solid-state lithium batteries that overcomes many of the problems that plague other solid electrolytes while also showing signs of being compatible with next-generation cathodes.

Berkeley Lab battery scientist Nitash Balsara, working with collaborator Joseph DeSimone of the University of North Carolina at Chapel Hill, came up with a highly conductive hybrid electrolyte, combining the two primary types of solid electrolytes--polymer and glass.

The brains of children who suffer clinical depression as preschoolers develop abnormally, compared with the brains of preschoolers unaffected by the disorder, according to new research at Washington University School of Medicine in St. Louis.

Their gray matter -- tissue that connects brain cells and carries signals between those cells and is involved in seeing, hearing, memory, decision-making and emotion -- is lower in volume and thinner in the cortex, a part of the brain important in the processing of emotions.

The new study is published Dec. 16 in JAMA Psychiatry.

Ice core records are rich archives of the climate history during glacial-interglacial cycles over timescales of up to ~800 kyr before the current age. In ice core studies, the accurate and precise dating of the core samples is a central issue that must be investigated to better constrain the timing, sequence, and duration of past climatic events.

It may be your liver (and not your better judgement) that keeps you away from excess sweets this holiday season. Two independent research groups have found the first evidence of a liver-derived hormone that specifically regulates intake of sugars and alcohol in mice. One of the studies also found that the same hormone suppresses the consumption of sweets in primates.

"A lot of work has examined the central mechanisms regulating sugar-seeking behavior, but the post-ingestive mechanisms regulating sugar appetite are poorly understood," says Matthew Potthoff of the University of Iowa, a senior author on one of the papers.

Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

The discovery opens up the possibility of improving new or existing malaria vaccines by boosting key immune cells needed for long-lasting immunity. This could even include vaccines that have previously been ineffective in clinical trials.

Researchers from Melbourne's Walter and Eliza Hall Institute discovered that the same inflammatory molecules that drive the immune response in clinical and severe malaria also prevent the body from developing protective antibodies against the parasite.

While the rapid emergence of antibiotic-resistant bacteria has prompted the medical community and media to educate the public to the dangers of misusing and overusing antibiotics but there may be more to the problem than medications - an ecologist is finding a way to blame nuclear research from the 1950s, good timing as environmentalists have declared open war on 'green' scientists who support nuclear energy as the most viable alternative to fossil fuels.

Using mathematical models, scientists have 'looked' into the interior of super-Earths and discovered that they may contain compounds that are forbidden by the classical rules of chemistry -- these substances may increase the heat transfer rate and strengthen the magnetic field on these planets. The findings have been presented in a paper published in the journal Scientific Reports.

The authors of the paper are a group of researchers from MIPT led by Artem Oganov, a professor of the Skolkovo Institute of Science and Technology and the head of the MIPT Laboratory of Computer Design. In a previous study, Oganov and his colleagues used an algorithm created by Oganov called USPEX to identify new compounds of sodium and chlorine, as well as other exotic substances.

WASHINGTON, D.C., Dec. 22, 2015 - Researchers at MINAO, a joint lab between The French Aerospace Lab in Palaiseau and the Laboratoire de Photonique et de Nanostructures in Marcoussis, have recently demonstrated metamaterial resonators that allow emission in the infrared to be tuned through the geometry of the resonator.

Their setup uses sub-wavelength scale metal-insulator-metal, or MIM, resonators to spatially and spectrally control emitted light up to its diffraction limit. This allows an array of resonators to be used to form an image in the infrared -- much as way the pixels in a television screen can form a visible light image -- with potential breakthrough applications in infrared televisions, biochemical sensing, optical storage, and anti-counterfeit devices.

When you look at the rainbow, what you see is the prism like effect of the mist (aerosolized water droplets) in the air reflecting the sunlight from different portions of the spheres.  These water droplets when suspended in air as mist will all reflect different colors at different angles.  The angle between you, the mist and the sun, will then determine which color is being refracted back to you from each location resulting in a rainbow.  This color is itself a special form of radiation, more specifically it is non-ionizing radiation with very specific wavelengths.

Few events encapsulate our infatuation with a well-told story as much as Christmas. As a culture, we are dependent on stories as a tool with which to negotiate our daily lives and make sense of the world around us. In particular, we love magical ones because they allow us to temporarily suspend our disbelief and revel in the joys of doing so.