In normal plants, when sugars (made from water and carbon dioxide during photosynthesis) accumulate in the leaves, photosynthesis slows down, and the plant does not take in as much carbon dioxide from the air. Likewise, when the sugars move out of the leaves, the rate of photosynthesis and carbon intake increases.
How do many plants ship sugars from their leaves to flowers, roots, fruits and other parts of their structure? Using genetic engineering techniques, Cornell researchers have finally proven a long-standing theory of how this occurs.
The findings not only deepen understanding of basic plant biology but could one day allow researchers to genetically engineer plants with increased photosynthetic rates, yields and carbon dioxide intake.