Banner
Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

Science Podcast Or Perish?

When we created the Science 2.0 movement, it quickly caught cultural fire. Blogging became the...

Type 2 Diabetes Medication Tirzepatide May Help Obese Type 1 Diabetics Also

Tirzepatide facilitates weight loss in obese people with type 2 diabetes and therefore improves...

Life May Be Found In Sea Spray Of Moons Orbiting Saturn Or Jupiter Next Year

Life may be detected in a single ice grain containing one bacterial cell or portions of a cell...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Using the highest magnetic fields in the world, an international team of researchers has observed the quantum Hall effect – a much studied phenomenon of the quantum world – at room temperature.

The quantum Hall effect was previously believed to only be observable at temperatures close to absolute zero (equal to minus 459 degrees). But when scientists at the National High Magnetic Field Laboratory in the U.S. and at the High Field Magnet Laboratory in the Netherlands put a recently developed new form of carbon called graphene in very high magnetic fields, scientists were surprised by what they saw.


This image is a scanning electron microscope micrograph of a strongly crumpled graphene sheet on a silicon wafer.

A new report on climate over the world's southernmost continent shows that temperatures during the late 20th century did not climb as had been predicted by many global climate models.

This comes soon after the latest report by the Intergovernmental Panel on Climate Change that strongly supports the conclusion that the Earth's climate as a whole is warming, largely due to human activity.

It also follows a similar finding from last summer by the same research group that showed no increase in precipitation over Antarctica in the last 50 years. Most models predict that both precipitation and temperature will increase over Antarctica with a warming of the planet.

When glaciologist Lonnie Thompson returns to Peru's Qori Kalis glacier early this summer, he expects to find that half of the ice he saw during his visit there last year has vanished.

What troubles him the most is his recent observations that suggest that the entire glacier may likely be gone within the next five years, providing possibly the clearest evidence so far of global climate change.

The fact that the Qori Kalis glacier, high in the Andes Mountains , is only one of many ice tongues retreating on the Quelccaya Ice Cap, the largest body of ice in the tropics, provides strong evidence of the warming that appears to be underway worldwide.

Quickly now, which is a higher risk that you will get a disease: 1 in 100; 1 in 1,000; or 1 in 10? Choosing the correct answer depends on a person's numeracy – the ability to grasp and use math and probability concepts, according to a presentation at the annual meeting of the American Association for the Advancement of Science.

The scenario was part of a series of experiments with University of Oregon students. In this case, 96 percent correctly chose 1 in 10, a 10 percent chance. However, that response came from a more-educated, college-going crowd.

Scientists using NASA satellites have discovered an extensive network of waterways beneath a fast-moving Antarctic ice stream that provide clues as to how "leaks" in the system impact sea level and the world's largest ice sheet. Antarctica holds about 90 percent of the world's ice and 70 percent of the world's reservoir of fresh water.

With data from NASA satellites, a team of scientists led by research geophysicist Helen Fricker of the Scripps Institution of Oceanography, La Jolla, Calif., detected for the first time the subtle rise and fall of the surface of fast-moving ice streams as the lakes and channels nearly a half-mile of solid ice below filled and emptied.

Advances in digital electronic circuits have prompted the boost in functions and ever- smaller size of such popular consumer goods as digital cameras, MP3 players and digital televisions. But the same cannot be said of the older analog circuits in the same devices, which process natural sights and sounds in the real world. Because analog circuits haven't enjoyed a similar rate of progress, they are draining power and causing other bottlenecks in improved consumer electronic devices.

Now MIT engineers have devised new analog circuits they hope will change that. Their work was discussed at the International Solid State Circuits Conference (ISSCC) in San Francisco Feb.