Banner
Opioid Addicts Are Less Likely To Use Legal Opioids At The End Of Their Lives

With a porous southern border, street fentanyl continues to enter the United States and be purchased...

More Like Lizards: Claim That T. Rex Was As Smart As Monkeys Refuted

A year ago, corporate media promoted the provocative claim that dinosaurs like Tyrannorsaurus rex...

Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

Science Podcast Or Perish?

When we created the Science 2.0 movement, it quickly caught cultural fire. Blogging became the...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

By mapping the interlocking structures of small molecules and mutated protein "receptors" in non-small cell lung cancer (NSCLC) cells, scientists at Dana-Farber Cancer Institute and their colleagues have energized efforts to design molecules that mesh with these receptors, potentially interfering with cancer cell growth and survival.

In a study published in the March issue of Cancer Cell, researchers led by Michael Eck, MD, PhD, of Dana-Farber used X-ray crystallography to determine the structure of two mutated forms of the epidermal growth factor receptor (EGFR) in lung cancer cells. EGFR, a protein known as a tyrosine kinase, plays a key role in relaying growth signals within cells.

It's a modern medicinal miracle. Health food advocates haven't been this excited since Psyllium took the nation by storm. Cocoa is for real and it apparently does everything.

A short while ago, it was said to make us smarter. and before then it could improve blood flow and maybe deter cancer.

Your football coach always told you that the low man wins. Seems that ape-like ancestors may have evolved that way for the same reason.

Australopiths maintained short legs for 2 million years because a squat physique and stance helped the males fight over access to females, a University of Utah study concludes.

"The old argument was that they retained short legs to help them climb trees that still were an important part of their habitat," says David Carrier, a professor of biology. "My argument is that they retained short legs because short legs helped them fight."


This drawing of a male gorilla skeleton illustrates their very short legs.

Human embryonic stem cells (hESCs) hold great promise for benefiting degenerative diseases, and do so by invoking multiple mechanisms. Such cells can be grown in a manner compatible with clinical use (i.e., without animal feeder layers) and even without the need for immunosuppression. These were a few of a number of conclusions arrived at by an international collaboration led by Evan Y. Snyder, M.D., Ph.D., and spearheaded by a member of his lab, Jean-Pyo Lee, Ph.D., of the Burnham Institute for Medical Research ("Burnham"). The study, to be published in Nature Medicine, will be made available by advanced publication at the journal's website on March 11, 2007.

The "raging hormones" of puberty are known to produce mood swings and stress for most teenagers, making it difficult to cope with this period of life. Until now, the specific causes of pubertal anxiety have not been identified, making it harder to understand and treat adolescent angst.

In the current edition of the journal Nature Neuroscience, researchers led by Sheryl S. Smith, PhD, professor of physiology and pharmacology at SUNY Downstate Medical Center, report findings demonstrating that a hormone normally released in response to stress, THP, actually reverses its effect at puberty, when it increases anxiety.

This hormone normally acts like a tranquilizer, acting at sites in the brain that "calm" brain activity.


Each year, malaria results in more than a million deaths. Controlling this disease involves understanding its transmission, and understanding its transmission means understanding its basic reproductive number, R0. For all infectious disease, R0 describes the most important aspects of transmission as it is the expected number of hosts that can trace their infection directly back to a single host after one disease generation. For vector-borne diseases, such as malaria, R0 is given by a classic formula. In a new study published in PLoS Biology, David Smith and colleagues demonstrate that estimates of R0 range from around one to over 3,000, providing much higher estimates than previously thought, with serious implications for the control of the disease.