Not so long ago, geneticists considered the vast stretches of non-coding regions in DNA to be “junk,” nothing more than the remnants of our evolutionary history. If it wasn’t a traditional gene, and didn’t produce a protein, it wasn’t of interest to most scientists. Luckily, not everyone considered these regions of DNA to be junk. Some considered the junk DNA to be the dark matter of the genome. They believed that it must have some function, but no one had yet determined exactly what that function was.

One of these individuals is Dr Craig Pikaard at Washington University- St Louis. His research group has discovered another use of junk DNA – it acts as a component of the cellular immune system by enhancing the ability of the cell to combat infection by viruses and transposons (also known as “jumping genes”). In a recent manuscript published in the journal Cell (vol 135 #4) Pikaard and associates demonstrate that in Arabidopsis , the fruit fly of plant genetics, the RNA polymerases within the cell use these non-coding regions of DNA to silence viruses and transposons. RNA polymerases are normally active in the process of transcription – the first stage of gene expression. Pikaard’s work suggests that these regions of “junk” DNA may be important in the generation of small interfering RNAs, so siRNAs. siRNAs are known to be involved in the silencing of genes by interfering with the transcription process. The medical community is very interested in the use of siRNAs in the prevention and treatment of diseases. Pikaard’s discovery in Arabidopsis should pave the way for additional studies in animals.

It seems that the time has come to let the term “junk DNA” fade into obscurity. In its place lets use the term “junkome” – those regions of DNA that we have no idea what they do, but agree that they must do something. After all, assuming something does not have a function because we do not understand what it does is not a lesson that we should be teaching young scientists.

·
WUSTL news release