Sepsis constitutes the main cause of disease and death in people suffering from severe burns. This results from the dissemination of pathogens in the body, including Pseudomonas aeruginosa, one of the three bacteria most frequently responsible for this complication. This microorganism is all the more fearsome as its virulence and its resistance to antibiotics can be modulated by various factors present in its host. Researchers led by Karl Perron, microbiologist at the Faculty of the sciences of the University of Geneva (UNIGE), Switzerland, studied the effect of exudates - biological fluids that seep out of burn wounds - on the survival and the virulence of these three bacteria.

Scientists have been studying how visual space is mapped in the cerebral cortex for many decades under the assumption that the map is equal for lights and darks. Surprisingly, recent work demonstrates that visual brain maps are dark-centric and that, just as stars rotate around black holes in the Universe, lights rotate around darks in the brain representation of visual space. The work was done by Jens Kremkow and collaborators in the laboratories of Jose Manuel Alonso at the State University of New York College of Optometry and will be published in the May 5, 2016 issue of Nature (advance online publication and press embargo lifted on April 27, 2016 at 1800 London time / 1300 US Eastern Time).

Specific regions of the brain are specialized in recognizing bodies of animals and human beings. By measuring the electrical activity per cell, scientists from KU Leuven, Belgium, and the University of Glasgow have shown that the individual brain cells in these areas do different things. Their response to specific contours or body shapes is very selective.

Facial recognition has already been the subject of much research. But what happens when we cannot recognize an animal or a human being on the basis of a face, but only have other body parts to go on? The mechanism behind this recognition process is uncharted territory for neuroscientists, says Professor Rufin Vogels of the KU Leuven Laboratory for Neuro- and Psychophysiology.

Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons -- the parts of neurons that make up our nerves, connecting our senses and muscles to the brain and spinal cord. Published in Cell Reports, the study shows how the protein myosin-Va acts as a calcium sensor that tells new pieces of axon where they should go.

Scientists have announced a major breakthrough in their understanding of how the fungus Aspergillus terreus - the cause of serious illness in humans - can move around the body, rather than remaining in the lungs as with similar fungal infections.

The study, led by researchers at The University of Nottingham and published in the academic journal Cell Chemical Biology, has discovered that infections from A.terreus could hitch a ride on immune cells in order to transport themselves and cause systemic infection.

The Rök Runestone, erected in the late 800s in the Swedish province of Östergötland, is the world's most well-known runestone. Its long inscription has seemed impossible to understand, despite the fact that it is relatively easy to read. A new interpretation of the inscription has now been presented - an interpretation that breaks completely with a century-old interpretative tradition. What has previously been understood as references to heroic feats, kings and wars in fact seems to refer to the monument itself.

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed "living" nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular "tentacles" inside the pore.

Analyses of ancient DNA from prehistoric humans paint a picture of dramatic population change in Europe from 45,000 to 7,000 years ago, according to a new study led by Howard Hughes Medical Institute Investigator David Reich at Harvard Medical School.

The new genetic data, published May 2, 2016 in Nature, reveal two big changes in prehistoric human populations that are closely linked to the end of the last Ice Age around 19,000 years ago. As the ice sheet retreated, Europe was repopulated by prehistoric humans from southwest Europe (e.g., Spain). Then, in a second event about 14,000 years ago, populations from the southeast (e.g., Turkey, Greece) spread into Europe, displacing the first group of humans.

The largest-ever study to sequence the whole genomes of breast cancers has uncovered five new genes associated with the disease and 13 new mutational signatures that influence tumour development. The results of two papers published in Nature and Nature Communications also reveal what genetic variations exist in breast cancers and where they occur in the genome.

Dr Serena Nik-Zainal of the Wellcome Trust Sanger Institute led analysis of 560 breast cancer genomes; 556 from women and four from men. This international collaboration included breast cancer patients from around the world, including the USA, Europe and Asia.

The results reveal more about the causes of breast tumours and provide evidence that breast cancer genomes are highly individual.

An international team of astronomers composed of UC San Diego astrophysicists has discovered three Earth-sized planets orbiting near the "habitable zone" of an ultracool dwarf star, the first planets ever discovered around such a tiny and dim star.

The discovery is detailed in a paper published this week in the journal Nature. The planets are so close to Earth -- only 40 light years away--that astronomers should eventually be able to study in greater detail the composition of each of the planets and their atmospheres as well as look for chemical signals of life.