A team of scientists, led by principal investigator David D. Schlaepfer, PhD, a professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine, has found that a protein involved in promoting tumor growth and survival is also activated in surrounding blood vessels, enabling cancer cells to spread into the bloodstream.

The findings are published in this week's online issue of the Journal of Cell Biology.

Blood vessels are tightly lined with endothelial cells, which form a permeability barrier to circulating cells and molecules. "Our studies show that pharmacological or genetic inhibition of the endothelial protein focal adhesion kinase, or FAK, prevents tumor spread by enhancing the vessel barrier function."

Soils of southern South America, including Patagonia, have endured a high frequency of disturbances from volcanic eruptions, earthquakes, landslides, and erosion. In addition, massive fires in the mid-20th century were set to forests in the region in an effort to promote colonization. In 2010, another 17,000 acres of Patagonia burned, fueling an international reforestation effort. Although the young soils of southern South America may contain high phosphorus levels, the element is tightly bound to the soil, offering limited phosphorus available to plants.

So how can plants in this area take root and access that phosphorus?

An editorial in this month's edition of Global Heart (the journal of the World Heart Federation) suggests the world of medicine could be experiencing its final days of the stethoscope, due to the rapid advent of point-of-care ultrasound devices that are becoming increasingly accurate, smaller to the point of being hand-held and less expensive as the years roll by. The editorial is by Professor Jagat Narula, Editor-in-Chief of Global Heart (Mount Sinai School of Medicine, New York, USA) and Associate Professor Bret Nelson, also of Mount Sinai School of Medicine, New York, USA.

NEW YORK, NY (January 22, 2014) — Columbia University Medical Center (CUMC) researchers have identified a gene, called matrix metalloproteinase-9 (MMP-9), that appears to play a major role in motor neuron degeneration in amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. The findings, made in mice, explain why most but not all motor neurons are affected by the disease and identify a potential therapeutic target for this still-incurable neurodegenerative disease. The study was published today in the online edition of the journal Neuron.

This news release is available in German.

Each cell in our body is unique. Even cells of the same tissue type that look identical under the microscope differ slightly from each other. To understand how a heart cell can develop from a stem cell, why one beta-cell produces insulin and the other does not, or why a normal tissue cell suddenly mutates to a cancer cell, scientists have been targeting the activities of ribonucleic acid, RNA.

The findings of the scientists of the Institute of Diabetes and Regeneration Research (IDR) at Helmholtz Zentrum München (HMGU) provide new insights into the molecular regulation of stem cell differentiation. These results reveal important target structures for regenerative therapy approaches to chronic diseases such as diabetes.

During embryonic development, organ-specific cell types are formed from pluripotent stem cells, which can differentiate into all cell types of the human body. The pluripotent cells of the embryo organize themselves at an early stage in germ layers: the endoderm, mesoderm and ectoderm. From these three cell populations different functional tissue cells arise, such as skin cells, muscle cells, and specific organ cells.

Can last meals reveal something the innocence of guilt of individuals on death row?

Some have argued there is significance embedded in death row last meal decisions.

Famously/weirdly, cop-killer Ricky Ray Rector asked to save his untouched pecan pie for after his execution, which sparked significant discussion about Rector's competency; on the basis of his food request.

The ribosome can be thought of as a decryption device housed within the cell. It is able to decipher the genetic code, which is delivered in the form of messenger ribonucleic acid (mRNA), and translate it into a specific sequence of amino acids. The final assembly of amino acids into long protein chains also takes place in these enzyme complexes. Without ribosomes, a cell would be unable to produce any proteins. Due to their central function, these enzyme complexes have long been the focus of attention of biologists.

The search for extraterrestrial life goes on, sort of. We do it, as half-heartedly as we do anything in space, because we're more afraid of being alone than finding another civilization. Or vice versa.

But we may not be looking in the best spots, even if we are looking in the Habitable Zones. Looking for planets or moons outside the "stellar habitable zone" might lead to environments that are even more favorable to supporting life than here on Earth, according to a crazy/insightful article in Astrobiology. These superhabitable worlds might have unique characteristics and be ideal targets for extrasolar exploration, the authors speculate, though that won't mobilize a lot of policymakers. 

Setting the stage for possible advances in pain treatment, researchers at The Johns Hopkins University and the University of Maryland report they have pinpointed two molecules involved in perpetuating chronic pain in mice. The molecules, they say, also appear to have a role in the phenomenon that causes uninjured areas of the body to be more sensitive to pain when an area nearby has been hurt. A summary of the research will be published on Jan. 23 in the journal Neuron.