A technique for controlling the magnetic properties of a commonly used blue dye could revolutionise computer processing power, according to research published recently in Advanced Materials.

Scientists have demonstrated that they can control the properties in a dye known as Metal Phthalocyanine, or MPc, with the use of magnetism.

Though this technology is still in its infancy, researchers claim that the ability to control the magnetic properties of MPc could have the potential to dramatically improve information processing in the future.

iPods, CD read/writers, and other electronic devices already use magnetism as a system for signalling to process and store information.

Current technology, however, has limitations.

The N-Myc gene lives a double life, triggering cancer when it works with the growth-promoting protein IL-3 and causing cell suicide in the absence of IL-3

(MEMPHIS, Tenn. – Nov. 26, 2007) A gene called N-Myc leads a double life in certain white blood cells when it is overexpressed, helping to trigger a cancer called acute myeloid leukemia (AML) under some conditions while triggering apoptosis, or cell suicide, under other conditions, according to results of a mouse study done by investigators at St. Jude Children's Research Hospital.

“This discovery gives researchers an important insight into N-Myc’s role in human AML and might contribute to new strategies for treating this leukemia or disrupting this gene’s ability to cause it,” said Gerard Grosveld, Ph.D., chair of the St.

One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed.

Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was formed about 3700 years ago.

By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour.

Mutant mice could provide genetic clues to understanding incurable human sight loss resulting from retinal degeneration. Research published in the online open access journal Genome Biology uncovers a role for microRNA in retinal disease, and may point the way to future therapies.

A team from the Trinity College Dublin and the Sanger Institute, Cambridge (UK), led by Dr Arpad Palfi and Dr Jane Farrar of the Smurfit Institute of Genetics, Trinity College Dublin used mutant mice that model the human eye disease retinitis pigmentosa (RP). The researchers compared these mice with wild-type mice, testing their hypothesis that changes in microRNA expression may be evident in retinal degeneration.

Two transporters that deliver alternative energy sources to the eye may help delay retinal damage that can occur in diabetes, researchers say.

The transporters, SMCT1 and SMCT2, can circumvent the eye’s protective blood-retinal barrier, delivering energy sources lactate and ketone bodies to a healthy eye, says Dr. Pamela Martin, biochemist at the Medical College of Georgia.

In diabetes, characterized by plenty of glucose but the inability of cells to use it, the retina may turn to those alternate sources for survival.

“Glucose is your primary energy source,” says Dr. Martin. “But in diabetes, the retina undergoes a lot of stress, there is oxidative damage and a lot of other things going on.

An effective and sensitive new method for detecting and characterizing prions, the infectious compounds behind diseases like mad cow disease, is now being launched by researchers at Linköping University in Sweden and other institutions.

Mad cow disease (BSE), which has caused the death of more than 200,000 cattle and 165 people in the U.K., has now abated but other prion disorders are on the rise and there is concern that new strains will infect humans.

Prions are not readily transmittable from species to species, but once they have broken through the species barrier they can rapidly adapt and become contagious within the species.

Development of the first hybrid battery suitable for storing electricity from renewable energy sources such as solar and wind is now a step closer.

CSIRO and Cleantech Ventures have invested in technology start-up Smart Storage Pty Ltd to develop and commercialise battery-based storage solutions.

Director of the CSIRO Energy Transformed National Research Flagship Dr John Wright said the Smart Storage battery technology aims to deliver a low cost, high performance, high power stationary energy storage solution suitable for grid-connected and remote applications. “Cost effective, high performance energy storage has been the missing link for renewable energy,” he said.

Current battery storage solutions undergo frequent deep discharging and are unable to meet high power demands.

Biodiesel can be manufactured from any product containing fatty acids, such as vegetable oil or animal fats.

The report, The greenhouse and air quality emissions of biodiesel blends in Australia assesses the emission levels and environmental impacts of biodiesel produced from sources including used cooking oil, tallow (rendered animal fat), imported palm oil and canola.

CSIRO Energy Transformed National Research Flagship researcher and report author Dr Tom Beer believes the wider introduction of biodiesel in Australia could help address the high greenhouse gas intensity of our nation’s transport sector.

“The results of this study show biodiesel has the potential to reduce emissions from the transport industry, which is the third largest producer of greenhouse gases in Australia, b

Fear of looking unattractive can be a stronger motivation for keeping people going to the gym than the hope of looking good, a study says.

Following a heart attack, part of the heart tissue dies. It is still not possible to restore the scar tissue arising as a result of this. The majority of stem cell researchers attempt to make new heart muscle cells from stem cells. Liesbeth Winter of the Leiden University Medical Center, however, was able to prove the concept of using the embryonic potential of adult human cells to train the heart: this cell therapy ensured that less tissue died and that the remaining heart cells functioned better.

The PhD student used the 'Epicardium Derived Cell' or EPDC. This cell plays a crucial role during embryonic heart development: the embryonic EPDCs provide cells for the connective tissue skeleton of the heart and for the walls of the coronary arteries.