According to quantum mechanics, small magnetic objects called nanomagnets can exist in two distinct states (i.e. north pole up and north pole down). They can switch their state through a phenomenon called quantum tunneling.
When the nanomagnet switches its poles, the abrupt change in its magnetization can be observed with low-temperature magnetometry techniques used in del Barco’s lab. The switch is called quantum tunneling because it looks like a funnel cloud tunneling from one pole to another.
A new paper in Nature shows that two almost independent halves of a new magnetic molecule can tunnel, or switch poles, at once under certain conditions. In the process, they appear to cancel out quantum tunneling.