Thanks to Buck and Axel and colleagues, most neuroscientists are aware of the precise topographical map of the mouse olfactory nerve projection in which each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR), and OSNs expressing a given OR converge on a set of glomeruli in the olfactory bulb. This week, Sato et al. mapped the zebrafish axonal projection using a bacterial artificial chromosome transgene. The transgene contained a cluster of 16 OR genes, two of which (OR111–7 and OR103–1) were replaced with yellow and cyan membrane-targeted reporters. Distinct sets of OSNs were fluorescently labeled, whereas their axons targeted the same cluster of glomeruli.

A provocative new model proposed by molecular biologist John Tower of the University of Southern California may help answer an enduring scientific question: Why do women tend to live longer than men?

That tendency holds true in humans and many other mammals as well as in the much-studied fruit fly Drosophila melanogaster.

In genetic studies of Drosophila, Tower and his team have shown that genes known to increase longevity always affect male and female flies differently.

"For a long time, we only did experiments in one sex or the other, depending on what was convenient," said Tower, an associate professor of biological sciences in the USC College of Letters, Arts & Sciences who has studied the genetics of aging in Drosophila for the last two decades.

How can defense or intelligence agencies safeguard the security of top-secret data protected by a computation device the size of a single molecule?

With cryptography approaching that sobering new era, scientists in Israel are reporting development of what they term the first molecular system capable of processing password entries. Abraham Shanzer and colleagues describe their "molecular keypad lock" in the Jan. 17 issue of the weekly Journal of the American Chemical Society.

Electronic keypad locks long have been fixtures on home security systems and other devices that require a password.

Population science is more art than science so you can count on me to be a little skeptical. However, there are times when the numbers are just too alarming and we have to mobilize for action.

What is this looming population catastrophe? It's Elvis impersonators. Even the Center for Disease Control has sounded the alarm about this issue.  If the CDC is worried about an issue, so am I.

1) Exxon-Mobil = $16 million among 43 groups in the 8 years covering 1998 to 2005.
Dr Gavin Prideaux, paleontologist for Western Australian Museum and Flinders University, publishes an article in international journal Geology's January 2007 edition that is certain to fuel what has become one of palaeontology's longest-running and contentious debates.
The latest study is unique in providing a long-term perspective on the responses of the megafauna in the Naracoorte Caves region of south-eastern Australia to cyclical swings in Ice Age climates.
Australia lost 90% of its large fauna, including rhino-sized marsupials, 3-metre tall kangaroos and giant goannas within 20 thousand years of human arrival.

The longest-running search for radio signals from alien civilizations is getting a burst of new data from an upgraded Arecibo telescope, which means the SETI@home project needs more desktop computers to help crunch the data.

Since SETI@home launched eight years ago, the project based at the University of California, Berkeley's Space Sciences Laboratory has signed up more than 5 million interested volunteers and boasts the largest community of dedicated users of any Internet computing project: 170,000 devotees on 320,000 computers.

Yet, new and more sensitive receivers on the world's largest radio telescope in Arecibo, Puerto Rico, and better frequency coverage are generating 500 times more data for the project than before.

A breakthrough in understanding the way atoms move across cell membranes in the human body could pave the way for the development of new treatments for inflammatory diseases such as rheumatoid arthritis.

Scientists at the University of Leeds have identified a previously unknown natural mechanism that opens ion channels – proteins at the cell surface that act as doorways into and out of cells – through the naturally occurring protein thioredoxin.

Ion channels allow movement of ions - electrically charged atoms - across the cell membrane to carry out various functions such as pain transmission, timing of the heart beat, and regulation of blood glucose.