What do glowing veggies have to do with a career in science" It just so happens that electrified pickles swimming in metal ions are one example of the type of undergraduate chemistry class demonstration that helps make a future in science a bright possibility, rather than a total turn-off, for many students.
In a commentary in this month’s Nature Chemical Biology, Brandeis University and Howard Hughes Medical Institute (HHMI) Professor Irving Epstein outlines a gathering storm clouding the future of U.S. science and prescribes a series of strategies to help avert a looming national crisis. Epstein says the continued success of U.S. science is seriously threatened by the fact that increasing numbers of undergraduates, particularly the disadvantaged, are writing off a career in science.
Why? Many students find introductory science, and chemistry in particular, both difficult and dull the way it is conventionally taught at the college level, discouraging many potential scientists before they ever have the chance to get hooked on science.
“Anyone who teaches an introductory science course at one of this country’s elite universities is familiar with the sea of white faces he or she encounters, and the tendency of that ocean to whiten even more as the semester progresses and as one moves up the ladder of courses,” writes Epstein, who last year won $1 million from HHMI to revamp introductory chemistry at Brandeis with an eye to luring—and retaining—more students in science, particularly disadvantaged ones.
“We need to ask ourselves why science is unattractive to so many students, particularly (but by no means exclusively), to underrepresented minority students,” writes Epstein. He believes that conventional science teaching and passive learning are primary culprits, because they rely too heavily on lecturing as well as unrelated and unexciting laboratory experiments.
Epstein proposes a variety of strategies aimed at capturing the imaginations of potential scientists, all of which maximize interaction among undergraduates, teachers, material, yes, even dill pickles, and contemporary technology, such as video games. The overall goal, says Epstein, is to bring the thrill of discovery and learning back into the science classroom.
But beyond that, Epstein’s HHMI project involves recruiting and retaining disadvantaged students in collaboration with the Posse Foundation, an organization that selects and trains “posses” of inner-city students to succeed in college. The students are chosen for their academic and leadership abilities. Epstein’s plan is to create a “science posse” at Brandeis each year that will build on the existing Posse program’s strengths but add features tailored specifically to science, such as a two-week pre-Brandeis “boot camp,” paid lab jobs, and academic support.
“If we can succeed in making chemistry more appealing to students by reawakening their instinctive curiosity about the world, and attract and retain more disadvantaged students in chemistry, the impact will be felt well beyond a single discipline, a single university, and a single nation,” says Epstein.
Comments