Banner
Merge: Did Human Language Evolve Due To A Mutation?

Merge is a controversial belief by some that human language faculty arose in humans through a single...

When The Blue Pill Causes Red Green Color Blindness

Sildenafil (viagra) is used to treat erectile dysfunction and is safe, with known side effects...

Coronavirus Genome Has Been Sequenced

A recent study identified the coronavirus responsible for the pneumonia epidemic in the Hubei province...

Folk Wisdom Is Not Right About Left Brains

We know the left and right side of our brain are specialized for cognitive abilities like language...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Quickly now, which is a higher risk that you will get a disease: 1 in 100; 1 in 1,000; or 1 in 10? Choosing the correct answer depends on a person's numeracy – the ability to grasp and use math and probability concepts, according to a presentation at the annual meeting of the American Association for the Advancement of Science.

The scenario was part of a series of experiments with University of Oregon students. In this case, 96 percent correctly chose 1 in 10, a 10 percent chance. However, that response came from a more-educated, college-going crowd.

Scientists using NASA satellites have discovered an extensive network of waterways beneath a fast-moving Antarctic ice stream that provide clues as to how "leaks" in the system impact sea level and the world's largest ice sheet. Antarctica holds about 90 percent of the world's ice and 70 percent of the world's reservoir of fresh water.

With data from NASA satellites, a team of scientists led by research geophysicist Helen Fricker of the Scripps Institution of Oceanography, La Jolla, Calif., detected for the first time the subtle rise and fall of the surface of fast-moving ice streams as the lakes and channels nearly a half-mile of solid ice below filled and emptied.

Advances in digital electronic circuits have prompted the boost in functions and ever- smaller size of such popular consumer goods as digital cameras, MP3 players and digital televisions. But the same cannot be said of the older analog circuits in the same devices, which process natural sights and sounds in the real world. Because analog circuits haven't enjoyed a similar rate of progress, they are draining power and causing other bottlenecks in improved consumer electronic devices.

Now MIT engineers have devised new analog circuits they hope will change that. Their work was discussed at the International Solid State Circuits Conference (ISSCC) in San Francisco Feb.

Researchers at the University of Pennsylvania School of Veterinary Medicine have derived uniparental embryonic stem cells - created from a single donor's eggs or two sperm - and, for the first time, successfully used them to repopulate a damaged organ with healthy cells in adult mice. Their findings demonstrate that single-parent stem cells can proliferate normally in an adult organ and could provide a less controversial alternative to the therapeutic cloning of embryonic stem cells.

"Creating uniparental embryonic stem cells is actually much more efficient than generating embryonic stem cells by cloning," said K.

In the digital age, organizing a photo collection has gone from bad to worse. The saying used to be that a picture is worth a thousand words. Now the question arises: what are a thousand pictures worth?

"Anyone who has a digital camera has the problem that they have more photos than they can possibly navigate," says Steve Seitz, associate professor of computer science & engineering. "And it's always a problem to find the photo that you're looking for."


Photo Tourism places each photo where the photographer would have been standing. Here, one photo of Trevi Fountain in Rome is enlarged, while other photos appear as pyramids.

With an aging population susceptible to stroke, Parkinson’s disease and other neurological conditions, and military personnel returning from Iraq and Afghanistan with serious limb injuries, the need for strategies that treat complex neurological impairments has never been greater.

One tack being pursued by neuroscientists and engineers is the development of “smart” neural prostheses. These devices are intended to restore function, through electrical stimulation, to damaged motor neural circuits – the long, slender fibers that conduct neurochemical messages between nerve cells in the brain and spinal cord.