Banner
Opioid Addicts Are Less Likely To Use Legal Opioids At The End Of Their Lives

With a porous southern border, street fentanyl continues to enter the United States and be purchased...

More Like Lizards: Claim That T. Rex Was As Smart As Monkeys Refuted

A year ago, corporate media promoted the provocative claim that dinosaurs like Tyrannorsaurus rex...

Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

Science Podcast Or Perish?

When we created the Science 2.0 movement, it quickly caught cultural fire. Blogging became the...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Women who undergo breast enlargement often see a sizable boost in self-esteem and positive feelings about their sexuality, a University of Florida nurse researcher reports.

Although plastic surgery should not be seen as a panacea for feelings of low self-worth or sexual attractiveness, it is important for health-care practitioners to understand the psychological benefits of these procedures, says Cynthia Figueroa-Haas, a clinical assistant professor at UF’s College of Nursing who conducted the study. The findings — which revealed that for many women, going bigger is better — appear in the current issue of Plastic Surgical Nursing.

In today’s online edition of Genome Research, a husband-and-wife research team from Thomas Jefferson University report the discovery of a gene that, when mutated, may suppress colorectal cancer. To conduct the study, the researchers used a strain of mice that develop polyps, or small growths of tissue, in the digestive tract—the harbingers of cancer. When these mice possessed one copy of the mutated gene, the incidence of small intestinal and colon polyps were reduced by about 90%.

“This gene may give us a novel target to aid in the diagnosis, prevention, and/or treatment of cancer,” says Dr. Arthur Buchberg, one of the co-senior authors on the report.

Generating electricity from renewable sources will soon become as easy as putting a brush and a tube in a tub of wastewater.

A carbon fiber, bottle-brush anode developed by Penn State researchers will provide more than enough surface for bacteria to colonize, for the first time making it possible to use microbial fuel cells for large scale electricity production. In addition, a membrane-tube air cathode, adapted from existing wastewater treatment equipment, will complete the circuit.

Based on three years of observations from the SCIAMACHY instrument aboard ESA's Envisat, scientists have produced the first movies showing the global distribution of the most important greenhouse gases – carbon dioxide and methane – that contribute to global warming.

The importance of cutting emissions from these 'anthropogenic', or manmade, gases has been highlighted recently with European Union leaders endorsing binding targets to cut greenhouse gases by at least 20 percent from 1990 levels by 2020. Further illustrating the urgency to combat global warming, Britain became the first country last week to propose legislation for cutting the gases.

Using lasers and tuning forks, researchers at Pacific Northwest National Laboratory have developed a chemical weapon agent sensing technique that promises to meet or exceed current and emerging defense and homeland security chemical detection requirements. The technique, called Quartz Laser Photo-Acoustic Sensing, or "QPAS," is now ready for prototyping and field testing.

PNNL, a Department of Energy national laboratory, has demonstrated QPAS's ability to detect gaseous nerve agent surrogates. In one test, researchers used diisopropyl methyl phosphonate (DIMP), which is a chemical compound that's similar to sarin. QPAS detected DIMP at the sub-part-per-billion level in less than one minute.

Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising new technique for noninvasively tracking where living cells go after they are put into the body. The new technique, which uses genetically encoded cells producing a natural contrast that can be viewed using magnetic resonance imaging (MRI), appears much more effective than present methods used to detect injected biomaterials.

Described in the February edition of Nature Biotechnology, the method was developed by a team of researchers from Johns Hopkins' Russell H.