Banner
Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

Science Podcast Or Perish?

When we created the Science 2.0 movement, it quickly caught cultural fire. Blogging became the...

Type 2 Diabetes Medication Tirzepatide May Help Obese Type 1 Diabetics Also

Tirzepatide facilitates weight loss in obese people with type 2 diabetes and therefore improves...

Life May Be Found In Sea Spray Of Moons Orbiting Saturn Or Jupiter Next Year

Life may be detected in a single ice grain containing one bacterial cell or portions of a cell...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll



Ultrasound-based tests allowing women undergoing in-vitro fertilization (IVF) to count their chickens before they've hatched may provide alternatives to the hormone-based tests used today. Less costly and invasive than the current ovarian reserve tests, clinicians may in future consider using ultrasound scans of a woman's ovaries to predict her ovaries' response to IVF.

Research published today in Reproductive Biology and Endocrinology details how Janet Kwee et. al. from Vrije Universiteit Medical Centre in Amsterdam, The Netherlands studied 110 women aged 18-39 who had difficulty conceiving. She counted the number of antral follicles, small egg-bearing ovarian follicles about 2-10 mm in diameter, with transvaginal sonography (ultrasound).

For the first time, scientists of the BaBar experiment at the Department of Energy's Stanford Linear Accelerator Center (SLAC) have observed the transition of one type of particle, the neutral D-meson, into its antimatter particle. This observation will now be used as a test of the Standard Model, the current theory that best describes all the universe's luminous matter and its associated forces.


Silicon Vertex Tracker. The SVT is the heart of the BABAR experiment at SLAC—in the photo, physicists are putting the finishing touches on improvements to the detector. (Photo Courtesy of Peter Ginter)

With an innovative combination of a novel application of synchrotron imaging, high-resolution microtomography, and developmental analysis, the team reconstructed tooth growth and determined the age at death of a fossil juvenile from Jebel Irhoud, Morocco. This study represents the first non-destructive approach to characterize dental development with a high degree of precision, as synchrotron images reveal microscopic internal growth lines without damage to the specimen. The team found that the Moroccan fossil child showed an equivalent degree of tooth development to living human children at the same age.

In the debate over alternative energy resources, geothermal technology has received scant media attention. Advocates call it one of the cleanest, sustainable energy resources available. However, steep construction, equipment and drilling costs have prevented more widespread development of geothermal technology. An Ohio University hydrothermal systems expert is working to change that.


Geothermal power plants harness energy created by heat at the Earth's core. Credit: Dina Lopez/Ohio University

The origins of modern humans continues to be one of the most hotly debated topics among anthropologists, and there is little consensus about where and when the first members of our species, Homo sapiens, became fully modern. While fossil evidence tells a complex tale of mosaic change during the African Stone Age, almost nothing is known about changes in human 'life history,' or the timing of development, reproductive scheduling, and lifespan. Research during the past two decades has shown that early fossil humans (australopithecines and early Homo) possessed short growth periods, which were more similar to chimpanzees than to living humans.

Although scientists know about basic voice production—the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs—the larynx is one of the body's least understood organs.

Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model—until now.

Vortices, or areas of rotational motion that look like smoke rings, produce sound in jet engines. New research from the University of Cincinnati (UC) uses methods developed from the study of jet noise to identify similar vortices in an animal model.