Banner
Social Media Is A Faster Source For Unemployment Data Than Government

Government unemployment data today are what Nielsen TV ratings were decades ago - a flawed metric...

Gestational Diabetes Up 36% In The Last Decade - But Black Women Are Healthiest

Gestational diabetes, a form of glucose intolerance during pregnancy, occurs primarily in women...

Object-Based Processing: Numbers Confuse How We Perceive Spaces

Researchers recently studied the relationship between numerical information in our vision, and...

Males Are Genetically Wired To Beg Females For Food

Bees have the reputation of being incredibly organized and spending their days making sure our...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Researchers have discovered a 'bizarre' microorganism which plays a key role in the food web of Earth's oceans.

Researchers from Spain's Institute of Marine Sciences (ICM-CSIC), alongside colleagues at the University of Bristol in the UK, discovered that symbiotic phytoplankton capable of fertilising the ocean with nitrogen 'fertilizer' evolved back in the Cretaceous at a time when the oceans were nutrient deprived.

This study, which used data from the Tara Oceans circumnavigation expedition, is published in Nature Communications today [22 March].

They look like small, translucent gems but these tiny 'gel' slivers hold the world of a patient's tumour in microcosm ready for trials of anti-cancer drugs to find the best match between treatment and tumour.

The 'gel' is a new 3D printable material developed by QUT researchers that opens the way to rapid, personalised cancer treatment by enabling multiple, simultaneous tests to find the correct therapy to target a particular tumour.

Professor Dietmar W. Hutmacher from QUT's Institute of Health and Biomedical Innovation said the new material was a gelatine-based hydrogel that mimicked human tissue.

Athens, Ga. - An overwhelming number of researchers still struggle within the black hole of the effectiveness and safety of stem cell therapy for neurological diseases. While the complexity of understanding how neurons grow, connect and function has long been studied, it remains a mystery, one that graduate student Forrest Goodfellow in the University of Georgia Regenerative Bioscience Center is helping unravel.

Goodfellow, a graduate student in the University of Georgia's Regenerative Bioscience Center, has developed a unique approach of marrying stem cell biology and 3-D imaging to track and label neural stem cells. His findings were published in the journal Advanced Functional Material.

A new analysis based on two long-term aging studies--one of Roman Catholic nuns, the other of Japanese American men--provides what may be the most compelling evidence yet that dementia commonly results from a blend of brain ailments, rather than from a single condition. This is often the case even when an Alzheimer's diagnosis has been given, say the researchers.

A team led by Dr. Lon White, with the University of Hawaii and the Veterans Affairs-affiliated Pacific Health Research and Education Institute, analyzed data on more than 1,100 people who had taken part in the Nun Study or the Honolulu-Asia Aging Study. Both studies followed hundreds of aging adults and included brain autopsies upon their death.

High-risk prescribing and preventable drug-related complications in primary care are major concerns for health care systems internationally, responsible for up to 4 per cent of emergency hospital admissions.

Now a major study of drug prescribing has shown that intervening in primary care health practices can significantly reduce rates of high-risk prescribing of drugs.

The results of the study have been published in the New England Journal of Medicine.

The study, led by NHS Tayside and the University of Dundee, has also shown that the change in prescribing patterns can lead to significant reductions in related emergency admissions to hospital, although the researchers say this finding requires further examination.

Biogas is an important energy source that plays a central role in the energy revolution. Unlike wind or solar energy, biogas can be produced around the clock. Could it soon perhaps even be produced to meet demand? A team of international scientists, including microbiologists from the Helmholtz Centre for Environmental Research (UFZ), scientists from Aarhus University and process engineers from the Deutsches Biomasseforschungszentrum (DBFZ), have been studying the feasibility of this kind of flexible biogas production. Among their findings, for example, is the discovery that biogas production can be controlled by altering the frequency at which the reactors are fed.