Banner
Social Media Is A Faster Source For Unemployment Data Than Government

Government unemployment data today are what Nielsen TV ratings were decades ago - a flawed metric...

Gestational Diabetes Up 36% In The Last Decade - But Black Women Are Healthiest

Gestational diabetes, a form of glucose intolerance during pregnancy, occurs primarily in women...

Object-Based Processing: Numbers Confuse How We Perceive Spaces

Researchers recently studied the relationship between numerical information in our vision, and...

Males Are Genetically Wired To Beg Females For Food

Bees have the reputation of being incredibly organized and spending their days making sure our...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences and The Wyss Institute for Biologically Inspired Engineering have developed a new, more precise way to control the differentiation of stem cells into bone cells. This new technique has promising applications in the realm of bone regeneration, growth and healing. The research, led by David Mooney, the Robert P. Pinkas Family Professor of Bioengineering at SEAS, was published in Nature Materials.

All the stars in the sky will eventually die - and some will really go out with a bang.

When a dying star goes supernova, it explodes with such ferocity that it outshines the entire galaxy in which it lived, spewing material and energy across unimaginable distances at near-light speed.

In some cases, these cosmic cataclysms defy expectations, blasting not symmetrically in all directions - as an exploding firework might - but instead launching two narrow beams, known as jets, in opposite directions.

Understanding how these jets are created is a vexing challenge, but an international research team has recently employed powerful computer simulations to sleuth out some answers.

The examination room computer promises safer, more efficient and more effective patient care. But exam room computing is challenging and there is growing evidence that it can be a threat to patient safety and detrimental to good relationships and health outcomes, according to a commentary in JAMA Internal Medicine.

Regenstrief Institute sociologist Richard Frankel, Ph.D. presents POISED, a model he has devised for developing and reinforcing good exam room computer-use by physicians.

A new study by UC San Francisco scientists shows that the proportion of normal cells, especially immune cells, intermixed with cancerous cells in a given tissue sample may significantly skew the results of genetic analyses and other tests performed both by researchers and by physicians selecting precision therapies.

Cells dynamically respond to environmental signals by turning appropriate sets of genes on or off. The "control system" that determines which genes need to be expressed at what time depends primarily on the interactions between transcription factor proteins (TFs) and the regulatory DNA sequence. This system is highly complex--especially in cells of multicellular organisms--as correct combinations of TF molecules need to bind specific sites on the DNA. Surprisingly, while multicellular organisms need to regulate more genes compared to bacterial cells, their TFs are less specific and bind promiscuously on many genomic locations, including unsuitable ones. So how can TFs reliably turn on the correct gene, while avoiding erroneously turning on the others?