Banner
Social Media Is A Faster Source For Unemployment Data Than Government

Government unemployment data today are what Nielsen TV ratings were decades ago - a flawed metric...

Gestational Diabetes Up 36% In The Last Decade - But Black Women Are Healthiest

Gestational diabetes, a form of glucose intolerance during pregnancy, occurs primarily in women...

Object-Based Processing: Numbers Confuse How We Perceive Spaces

Researchers recently studied the relationship between numerical information in our vision, and...

Males Are Genetically Wired To Beg Females For Food

Bees have the reputation of being incredibly organized and spending their days making sure our...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Astronomers have long turned their telescopes, be they on satellites in space or observatories on Earth, to the wide swaths of interstellar medium to get a look at the formation and birth of stars. However, the images produced over the last 50 years look more like weather maps showing storm systems instead of glittering bursts of light that the untrained observer might expect of a "star map."

Until now.

Led by University of Florida astronomer Peter Barnes and Erik Muller at the National Astronomy Observatory of Japan, a team of international researchers has just released the most comprehensive images anyone has ever seen of the Milky Way's cold interstellar gas clouds where new stars and solar systems are being born.

A 48 million year-old horse-like equoid fetus has been discovered at the Messel pit near Frankfurt, Germany according to a study in PLOS ONE

Jens Lorenz Franzen from Senckenberg Research Institute Frankfurt, Germany, and Naturhistorisches Museum Basel, Switzerland, and colleagues completed their investigation of the fetus from a 48 million year-old horse-like equoid uncovered near Frankfurt, Germany in 2000. They evaluated the bones and anatomy and used scanning electronic microscopy (SEM) and high-resolution micro-x-ray to describe the ~12.5 cm fetus.

The human organism is composed of numerous types of molecules, both simple and complex, and all fundamental processes in a living body occur in water solutions. Therefore, for a drug to work, it must dissolve in body liquids, which are primarily water.

Polymorphism of solid substances, a well-known problem of drug delivery, is the ability of solid drugs to form several different crystal structures (polymorphs). Polymorphs may differ in properties like biological activity, and in addition, their formation is difficult to control.

The cognitive skills used to learn how to ride a bike may be the key to a more accurate understanding of developmental dyslexia. And, they may lead to improved interventions.

Carnegie Mellon University scientists investigated how procedural learning - how we acquire skills and habits such as riding a bike - impacts how individuals with dyslexia learn speech sound categories. Published in Cortex, Lori Holt and Yafit Gabay found for the first time that learning complex auditory categories through procedural learning is impaired in dyslexia. This means that difficulty processing speech may be an effect of dyslexia, not its cause.

Burning a candle could be all it takes to make an inexpensive but powerful electric car battery, according to new research published in Electrochimica Acta. The research reveals that candle soot could be used to power the kind of lithium ion battery used in plug-in hybrid electric cars.

The authors of the study, from the Indian Institute of Technology in Hyderabad, India, say their discovery opens up the possibilities to use carbon in more powerful batteries, driving down the costs of portable power.

An estimated seven to ten million people worldwide are living with Parkinson's disease (PD), which is an incurable and progressive disease of the nervous system affecting movement and cognitive function. More than half of PD patients develop progressive disease showing signs of dementia similar to Alzheimer's disease.

A research team at University of Copenhagen, Denmark, has discovered that non-inheritable PD may be caused by functional changes in the immune regulating gene Interferon-beta (IFNβ). Treatment with IFNβ-gene therapy successfully prevented neuronal death and disease effects in an experimental model of PD. 


Protein regulates waste management in nerve cells