The rich and long-lasting Nordic Bronze Age was dependent throughout on incoming flows of copper and tin. The crucial turning point for the development of the Nordic Bronze Age can be pinpointed as the second phase of the Late Neolithic (LN II, c. 2000–1700 BC) precisely because the availability and use of metal increased markedly at this time. But the precise provenance of copper reaching Scandinavia in the early second millennium is still unclear and our knowledge about the driving force leading to the establishment of the Bronze Age in southern Scandinavia is fragmentary and incomplete.
A new study, drawing on a large data set of 210 samples representing almost 50% of all existing metal objects known from this period in Denmark, uses trace element (EDXRF) and isotope analyses (MC-ICP-MS) of copper-based artifacts in combination with substantial typological knowledge to profoundly illuminate the contact directions, networks and routes of the earliest metal supplies. It also presents the first investigation of local recycling or mixing of metals originating from different ore regions. Both continuity and change emerge clearly in the metal-trading networks of the Late Neolithic to the first Bronze Age period.
Artifacts in LN II consist mainly of high-impurity copper (so-called fahlore type copper), with the clear exception of British imports. Targeted reuse of foreign artifacts in local production is demonstrated by the presence of British metal in local-style axes. The much smaller range of lead isotope ratios among locally crafted compared to imported artifacts is also likely due to mixing. In the latter half of Nordic LN II (1800–1700 BC), the first signs emerge of a new and distinct type of copper with low impurity levels, which gains enormously in importance later in NBA IA.
This article throws new light on the early phases of metallurgy in southern Scandinavia. It does so by tracking the incoming flows of copper to the region, which ultimately led to the breakthrough of the Nordic Bronze Age c. 1600 BC–a golden epoch boasting such highly sophisticated bronzework as the Trundholm sun chariot. Scandinavia for a long time was marginal to the metallurgical evolution that had begun in the ninth millennium BC in the ancient Near East with the use of beads, pendants and sheet ornaments made from annealed native copper [1, 2]. In central and Mediterranean Europe, the first indications of copper-based technologies date to the later fifth millennium [3–5], initiated through the import of metal ornaments and tools mainly from the Balkan region [6]. According to currently available evidence, however, a regional metallurgy in central Europe does not appear until the beginning of the fourth millennium, with depositions of copper objects such as the Stollhoff hoard [4, 7], the early phases of the Mondsee cultural group [8], and even traces of copper smelting at Brixlegg in Austria around 4000 BC [9].
As early as c. 4400 BC, there are signs of a faint awareness of copper technologies in Scandinavia in the form of rare imports of copper axes into the region’s Late Mesolithic communities [4, 10]. A thousand years later, local metallurgy was likely practiced in the Middle Neolithic Funnelbeaker culture [10–12], only to disappear again subsequently. During most of the third millennium, metallurgy seems absent from the region, even if experiments with casting copper axes and hammering sheet ornaments reappear in Bell Beaker environments in Jutland, 2400–2100 BC. Typology-based studies suggest that the incipient production and import of copper objects in the Funnelbeaker culture around 3500 BC was due to Scandinavia’s involvement in prestige good trading that extended as far as the copper-producing hubs of central and southeastern Europe [8, 13, 14]. A similar explanation may fit the reappearance of copper axes and ornaments c. 2400 BC in the Jutlandish Bell Beaker culture during the first phase of the Late Neolithic (LN I) [12, 15, 16]. At 2000 BC, however, a copper-based technology begins to achieve full economic and social integration in Scandinavia simultaneously with the spread of bronze, or copper with similar properties, across Europe and large tracts of Afro-Eurasia [15, 17–19]. The co-occurrence of these two phenomena is highly significant. Prior to this threshold, metal objects and knowledge of their production had appeared and disappeared several times over the millennia, indicated by, for instance, metallurgical experiments documented at early Funnelbeaker settlement sites [20].
The lack of metal resources can be identified as one major reason for the relatively late enduring involvement with metallurgy in Scandinavia. Although copper ores were discovered and exploited in central and northern Scandinavia from the Middle Ages onwards, these indigenous sources were most likely unknown to Bronze Age people and were not exploited [21]. Nordic Bronze Age (NBA) societies were, therefore, completely dependent on exogenous sources from the beginning [15, 21–25].
The second phase of the Late Neolithic (LN II, c. 2000–1700 BC) can be pinpointed as the crucial turning point, for the very reason that the availability and use of metal increased markedly and grew substantially in the following centuries. With the Scanian Pile hoard as an early highlight showcasing local metalworking activities as early as c. 2000 BC, conclusive evidence now exists for indigenous production of metal objects in southern Scandinavia, more precisely in eastern Jutland, Funen, Zealand and Scania.
The high degree of fragmentation in the Pile hoard shows that objects, including rings, were hacked into pieces that would fit into a small crucible and were recast as axes. The next four hundred years laid the foundation for the final breakthrough and subsequent rise of the NBA c. 1600–500 BC with advances in the repertoire and refinement of artifacts, while the consumption of bronze spread northward to central Scandinavia [15, 19] (Fig 1).