Banner
Social Media Is A Faster Source For Unemployment Data Than Government

Government unemployment data today are what Nielsen TV ratings were decades ago - a flawed metric...

Gestational Diabetes Up 36% In The Last Decade - But Black Women Are Healthiest

Gestational diabetes, a form of glucose intolerance during pregnancy, occurs primarily in women...

Object-Based Processing: Numbers Confuse How We Perceive Spaces

Researchers recently studied the relationship between numerical information in our vision, and...

Males Are Genetically Wired To Beg Females For Food

Bees have the reputation of being incredibly organized and spending their days making sure our...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

In work that could lead to safe and effective techniques for gene therapy, MIT researchers have found a way to fine-tune the ability of biodegradable polymers to deliver genes.

Gene therapy, which involves inserting new genes into patients' cells to fight diseases like cancer, holds great promise but has yet to realize its full potential, in part because of safety concerns over using viruses to carry the genes.

The new MIT work, published this week in Advanced Materials, focuses on creating gene carriers from synthetic, non-viral materials.

Prions – an abbreviation for proteinaceous infectious particles – work as a trigger to a set of diseases of the brain and nervous system, the so-called spongiform encephalopathies. These include BSE in cattle, scrapie in sheep and Creutzfeldt Jakob’s Disease in humans. Prions are structural variants of a normal protein found in healthy tissues – especially in the brain.

The devastating effect of infectious prions is that, once they have entered the organism, they can modify the normal "healthy" prion proteins to create more infectious prions, and thus cause the illness to progress.

Gene therapy, a field of intense research for nearly 20 years, involves inserting new genes into patients' cells to fight diseases like cancer. It holds great promise but has yet to realize its full potential, in part because of safety concerns over the conventional technique of using viruses to carry the genes - more than 1,000 gene-therapy clinical trials have been conducted and most trials use viruses as carriers, or vectors, to deliver genes.

However, there are risks associated with using viruses. To date there are no FDA-approved gene therapies. As a result, many researchers have been working on developing non-viral methods to deliver therapeutic genes.

The standard approach in biology is to focus on identifying individual genes and proteins and pinpointing their role in the cell or the human body. But molecules almost never act alone. According to Lilia Alberghina from the University of Milano-Bicocca, Italy: “There is a growing awareness in medical science that biological entities are ‘systems’ – collections of interacting parts.”

A new report by the European Science Foundation (ESF) on systems biology is an attempt to identify how research in this area could be accelerated and developed further in Europe. The report concludes with a set of specific recommendations that aims at consolidating Systems Biology efforts in Europe.

Systems biology is data driven. Will it work without the same time spent on experimental data?

Weather forecasting and climate modelling for the notoriously unpredictable Sahel region of Africa could be made easier in the future, thanks to new research results coming from the African Monsoon Multidisciplinary Analysis study (AMMA).

A paper published in Geophysical Research Letters describes how the AMMA scientists gathered new atmospheric data by using satellite imagery to plot flight paths over areas where storms had produced very wet soils. Dropsondes (weather reconnaissance devices) were launched from a research aircraft above these wet areas to record data such as humidity, wind strength and temperature. The findings allowed the scientists to compare the atmospheric conditions above wet soils with those above adjacent dry soils.

Virological evidence cannot prove transmission in HIV criminal cases, warn experts in this week’s BMJ.

Viral phylogenetics provides a way of assessing the relations between viruses from different people. It allows us to estimate the probability that viruses from two particular people have a recent common origin. But there are serious limitations on what can and cannot be inferred using this technique.

The recent flurry of criminal cases brought against people in the United Kingdom accused of infecting their sexual partner(s) with HIV has resulted in several convictions, write Professor Deenan Pillay and colleagues in an editorial.