News concerning Artificial Intelligence (AI)  abounds again. The progress with Deep Learning techniques are quite remarkable with such demonstrations of self-driving cars, Watson on Jeopardy, and beating human Go players. This rate of progress has led some notable scientists and business people to warn about the potential dangers of AI as it approaches a human level. Exascale computers are being considered that would approach what many believe is this level. 

Today I would like to mention that my book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab" is now available for purchase as E-Book at its World Scientific site.
I would like to use this space to advertise a couple of blogs you might be interesting to know about. Many of you who erratically read this blog may probably have already bumped into those sites, but I figured that as the readership of a site varies continuously, there is always the need to do some periodic evangelization.

Every year, at about this time, the level of activity of physicists working in experimental collaborations at high-energy colliders and elsewhere increases dramatically. We are approaching the time of "winter conferences", so called in order to distinguish them from "summer conferences". 
During winter conferences, which take place between mid-February and the end of March in La Thuile, Lake Louise, and other fashionable places close to ski resorts, experimentalists gather to show off their latest results. The same ritual repeats during the summer in a few more varied locations around the world. 

The so-called Lambda_b baryon is a well-studied particle nowadays, with several experiments having measured its main production properties and decay modes in the course of the past two decades. It is a particle made of quarks: three of them, like the proton and the neutron. Being electrically neutral, it is easily likened to the neutron, which has a quark composition "udd". In the space of quark configurations, the Lambda_b is in fact obtained by exchanging a down-type quark of the neutron with a bottom quark, getting the "udb" combination.
Lubos Motl published the other day in his crazily active blog a very nice new review of "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". The review is authored by Tristan du Pree, a colleague of mine who has worked in CMS until very recently - now he moved to a new job and changed to ATLAS! (BTW  thanks Lubos, and thanks Tristan!)
I liked a lot Tristan's commentary of my work, and since he mentions with quite appreciative terms the slow-motion description of a peculiar collision I offer in my book, I figured I'd paste that below.
Today I took delivery of my copy of Tony Zee’s third contribution to the Princeton University Press In a Nutshell series: “

Lots of people have asked me for my views on Erik Verlinde’s latest paper “Emergent Gravity and the Dark Universe“. This fifty-one pages long preprint has attracted a fair bit of media attention. Particularly in the Netherlands, Verlinde’s name being attached to the draft paper has caused a true hype.

In a few days, students from five high schools in Venice will be lectured on particle physics, the Higgs boson, the giant detectors of today's colliders, and will be treated with pictures and graphs aimed at stimulating their artistic vein.
--- repost due to previous version not surviving server maintenance ---

Black holes are hot. Well, thermodynamically these suckers are freaking cold, but they do attract more attention than hot supernovae. And with attention comes recognition. As announced last month, as much as 97% of the $ 6.3 mln 2016 Breakthrough Prize money for physics went to black hole research.