# Physics

<!--[if gte mso 9]>
800x600
<![endif]-->

** Common Sense and Cosmology **

While tediously compiling a list of scientific publications that chance to have my name in the authors list (I have to apply for a career advancement and apparently the committee will scrutinize the hundred-page-long lists of that kind that all candidates submit), I discovered today that I just passed the mark of

**1000 published articles.**This happened on February 18th 2016 with the appearance in print of a paper on dijet resonance searches by CMS. Yay! And 7 more have been added to the list since then.
I think this might be interesting to the few of you left out there who still read paper books (I do too). World Scientific offers, until April 29th, a 35% reduction in the cover price of its books, if you purchase two of them.

This might be a good time to pre-order my book, "Anomaly!", if you have not done so yet. Plus maybe get one of the other many excellent titles in the collection of WS.

You can see the offer at the site of my book (that's where I got the info from!).

This might be a good time to pre-order my book, "Anomaly!", if you have not done so yet. Plus maybe get one of the other many excellent titles in the collection of WS.

You can see the offer at the site of my book (that's where I got the info from!).

**How well established are current cosmological dogmas? What do we really know about the fundamental origin and dynamics of our Universe, in spite of the remarkable work accomplished by COBE, WMAP,**

*Planck*and other collaborations? Actually, we know little or nothing about many basic questions. In particular, the structure and dynamics of the physical vacuum remain by now totally unknown. As a consequence, we are unable to describe the process by which the cosmological vacuum expands following the expansion of space.I gave a 15 minute talk at a local Americal Physical Society Meeting. Here is the title and abstract.

**Title**: A Unified Mathematical Field Theory

Exclusive production processes at hadron collider are something magical. You direct two trucks at 100 miles per hour one against the other head-on, and the two just gently push each other sideways, continuing their trip perfectly unaffected, but leave behind a new entity (a cart?) produced with the energy of the glancing collision.

<!--[if gte mso 9]>
800x600
<![endif]-->

**Zero Neutrino Mass
Scale in Semi-Empirical Phenomenology **

There are definite empirical hints on special kind of neutrino masses.

1) Ratio of neutrino masses to the lightest particle
electron mass is very small m-nu/m-e = ~10^{-6}. Hence it seems natural
to suggest new physics effect of zero neutrino mass scale.

Okay, this one was not about the umpteenth statistical fluctuation, hopelessly believed by somebody to be the start of a new era in particle physics. It's gotten too easy to place and win bets like that - the chance that the Standard Model breaks down due to some unexpected, uncalled-for resonance is so tiny that any bet against it is a safe one. And indeed I have won three bets of that kind so far (and cashed 1200 dollars and a bottle of excellent wine); plus, a fourth (for $100) is going to be payable soon.

After decades of theoretical studies and experimental measurements, forty years ago particle physicists managed to construct a very successful theory, one which describes with great accuracy the dynamics of subnuclear particles. This theory is now universally known as the Standard Model of particle physics. Since then, physicists have invested enormous efforts in the attempt of breaking it down.

It is not a contradiction: our understanding of the physical world progresses as we construct a progressively more refined mathematical representation of reality. Often this is done by adding more detail to an existing framework, but in some cases a complete overhaul is needed. And we appear to be in that situation with the Standard Model.

It is not a contradiction: our understanding of the physical world progresses as we construct a progressively more refined mathematical representation of reality. Often this is done by adding more detail to an existing framework, but in some cases a complete overhaul is needed. And we appear to be in that situation with the Standard Model.

Expectations are rising for the 2016 run of the Large Hadron Collider. The machine has restarted colliding protons in the cores of ATLAS and CMS, where finally the reality of the tantalizing 750 GeV diphoton bumps seen by the two experiments in their Run 1 and 2015 data *will* be assessed one way or the other.

The flurry of papers discussing possible interpretations of the observed effect, first reported last December during a data jamboree at CERN, has slightly reduced in intensity but is still going rather strong in an absolute sense. Over 300 phenomenological interpretations have been published on the preprint Arxiv (but I wonder how many will end up with a publication on a refereed journal ? Maybe just a handful).

The flurry of papers discussing possible interpretations of the observed effect, first reported last December during a data jamboree at CERN, has slightly reduced in intensity but is still going rather strong in an absolute sense. Over 300 phenomenological interpretations have been published on the preprint Arxiv (but I wonder how many will end up with a publication on a refereed journal ? Maybe just a handful).