# Physics

*This is the fifth and final part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". (the beginning of the chapter was omitted since it described a different story). The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989. The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.*

*Abstract*

In the eighteenth century, scientists discovered the ingredients of basic quantum field theory.

*This is the fourth part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989. The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.*

*This is the third part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989. The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.*

*a b / a*

**≠**

*b*.

The Hilbert Book Model contains a base model that is constructed from a quaternionic infinite dimensional separable Hilbert space and its unique non-separable companion that embeds its separable partner. The quaternionic number system exists in many versions that differ in the way that they are ordered. Cartesian and polar coordinate systems can define these orderings and let these versions act as parameter spaces. These parameter spaces can be represented by eigenspaces of special reference operators that reside in the separable Hilbert space. The operators connect the countable eigenvalues with an orthonormal base of eigenvectors. This procedure only applies the rational members of the number system.

With respect to the visual perception, the human optic tract closely resembles the visual tract of all vertebrates.

The Hilbert Book Model impersonates a creator (HBM). At the instant of the creation, the HBM stores all dynamic geometric data of his creatures in a read-only repository that consists of a combination of an infinite dimensional separable quaternionic Hilbert space and its unique non-separable companion that embeds its separable partner. The storage applies quaternionic eigenvalues of operators.

Quantum entanglement is a well observed but not well understood phenomena. The frontier in this area has been to entangle systems at greater and greater distances. Theoretically however it is poorly understood. Susskind and Maldacena proposed the ER=EPR conjecture, which to oversimplify, states that entangled particles are connected by tiny wormholes(Maldacena and Susskind) In this brief blog post I present a simple proof that the “non-locality” that experimentalist write of, and Susskind conjectured about solving via wormholes, can be explained with standard quantum mechanics and standard relativity. What is new here is how we look at the spaces involved.