Nowadays Physics is a very big chunck of science, and although in our University courses we try to give our students a basic knowledge of all of it, it has become increasingly clear that it is very hard to keep up to date with the developments in such diverse sub-fields as quantum optics, material science, particle physics, astrophysics, quantum field theory, statistical physics, thermodynamics, etcetera.

Simply put, there is not enough time within the average life time of a human being to read and learn about everything that is being studied in dozens of different disciplines that form what one may generically call "Physics. 

Twenty years have passed since the first observation of the top quark, the last of the collection of six that constitutes the matter of which atomic nuclei are made. And in these twenty years particle physics has made some quite serious leaps forward; the discovery that neutrinos oscillate and have mass (albeit a tiny one), and the discovery of the Higgs boson are the two most important ones to cite. Yet the top quark remains a very interesting object to study at particle colliders.
  So called "memristors" are an intriguing hot topic in electronics and nanotechnology, and highly controversial to boot. A certain type of memristor device was predicted to exist in 1971. Being perhaps a simple electrical component much like a resistor or capacitor, HP claimed to have discovered the missing memristor in 2008, except, "The Missing Memristor has Not been Found" [Nature Publishing Group’s Scientific Reports 5, 11657 (1215)]

A three inch long equation (or according to Kaku one inch) is the holy grail of post modern theoretical physics.  We all want one equation from which one can derive all known physical laws. I don't have that.  What I have today is a three inch equation which goes a step towards unifying gravity and the standard model of particle physics.  It will allow one to predict the gravitational corrections to standard model interactions. Not only do I have a theory to present, but an experiment to propose which could test this theory.

One of the nice things about the 2012 discovery of the Higgs boson is that the particle has been found at a very special spot - that is, with a very special mass. At 125 GeV, the Higgs boson has a significant probability to decay into a multitude of different final states, making the hunt for Higgs events entertaining and diverse.



<!--[if gte mso 9]> Normal 0 MicrosoftInternetExplorer4 <![endif]-->

On these hot days of August one is led to remember the lyrics of Elton John's 1972 hit "Rocket Man": "and all that science I don't understand... It's just my job five days a week". Indeed, being a scientist should not be considered a mission, something you work at 24 hours a day, seven days a week. We do have our lives and attend to them... more or less.

Scientists on the NuMI Off-Axis Electron Neutrino Appearance (NOvA) experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great progress toward its goal of a major leap in our understanding of these ghostly particles.

Exotic baryons, what are they ? But first of all, what is a baryon ? Well, it depends whom you ask the question to. In the context of the static quark model, a baryon is a particle composed of a triplet of quarks, as opposed to a meson, which is a particle composed of a quark-antiquark pair. But the quark model is fifty years old, and nowadays we know better: baryons and mesons do not just contain a triplet or a duo of quarks; they are in fact a soup of quarks and gluons. What is still true is that their intrinsic properties are distinguished by the _valence_ quarks they contain.
Meteorites - stones that fall on Earth from space - are quite rare, but not so much as to make their possession impossible. In fact I know a few collectors of these strange bits of matter; and I find the very strange-looking stones quite fascinating. I myself own a small piece of tectite fallen somewhere in South Africa a few decades ago; but it is just an odd bit in a larger collection of minerals and crystals that formed on Earth (yes, I find those even more fascinating; but that's just me).