Physics

Abstract

Two and a half centuries ago, scientist discovered solutions of the wave equation that represent dark quanta.

Another chapter in the saga of the search for the elusive, but dominant, decay mode of the Higgs boson has been reported by the CMS collaboration last month. This is one of those specific sub-fields of research where a hard competition arises on the answer to a relatively minor scientific question. That the Higgs boson couples to b-quarks is indirectly already well demonstrated by a number of other measurements - its coupling to (third generation) quarks being demonstrated by its production rate, for example. Yet, being the first ones to "observe" the H->bb decay is a coveted goal.
Arthur Eddington and others tried numerous times to test Einstein's general theory of relativity by photographing the stars which appear in the sky next to the eclipsed sun.  Einstein's theory predicted a particular change in their apparent position.  To the ability of anyone to measure this effect, all observations have been in accord with Einstein's theory.  My own work on and interest in theories of everything, both my own, and others, has as a fundamental assumption that Einsteins theory is exactly correct.  It probably is, however, no one gets a pass.  No matter who the scientist is we test their theories multiple times.  

If I am alive, I probably owe it to my current very good physical shape.

That does not mean I narrowly escaped a certain death; rather, it means that if I had been slower there are good chances I would have got hit by lightning, under arduous conditions, at 4300 meters of altitude.

This is the fifth and final part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". (the beginning of the chapter was omitted since it described a different story). The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989.  The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.

Abstract

In the eighteenth century, scientists discovered the ingredients of basic quantum field theory.

This is the fourth part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989. The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.
This is the third part of Chapter 3 of the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab". The chapter recounts the pioneering measurement of the Z mass by the CDF detector, and the competition with SLAC during the summer of 1989. The title of the post is the same as the one of chapter 3, and it refers to the way some SLAC physicists called their Fermilab colleagues, whose hadron collider was to their eyes obviously inferior to the electron-positron linear collider.
I have recently been reproached, by colleagues who are members of the competing ATLAS experiment, of misusing the word "see" in this blog, in the context of searches for physics signals. That was because I reported that CMS recently produced a very nice result where we measure the rate of H->bb decays in events where the Higgs boson recoils against a energetic jet; that signal is not statistically significant, so they could argue that CMS did not "see" anything, as I wrote in the blog title. 
The complex phase of a quaternion becomes apparent when a (complex) plane is put through its real axis and its imaginary part. In multiplication, quaternions do not commute. Thus, in general a b / a b.