In 1992 I started working at my undergraduate thesis, the search for all-hadronic top quark pairs in CDF data. The CDF experiment was just starting to collect proton-antiproton collision data with the brand-new silicon vertex detector in what was called Run 1a, which ended in 1993 and produced the data on which the first evidence claim of top quarks was based. But I was still working on the Run 0 data: 4 inverse picobarns of collisions -the very first collisions at the unprecedented energy of 1.8 TeV. And I was not alone: many analyses of those data were still in full swing.
I apologize to you, dear reader, for not having written yet about the 2.5 standard deviation excess that the ATLAS collaboration has recently found in diboson final states at 2 TeV in the 2012 8-TeV data. I thought it was interesting, but for some reason the distributions published by the experiment did not stimulate my fantasy enough to trigger an article here. Or maybe, it was because they got published at a time when I had too much on my plate to deal with it...

    Many people associate the image of an old man in glasses and crazy white hair with a scientist. This is largely due to the visage of Albert Einstein in his later years. Einstein is largely recognized today for his theories on relativity describing motion at the speed of light and that of gravity.  Einstein did not win the Nobel prize for either of these however, he won the award for a lesser known discovery called the photoelectric effect. This discovery was one of the foundational cornerstones giving rise to quantum mechanics. 
The discovery by an undergraduate student of tubes of plasma drifting above Earth has made headlines in the past few days.

Many people have asked how the discovery was made and, in particular, how an undergraduate student was able to do it.

The answer is a combination of an amazing new telescope, a very smart student and an unexpected fusion of two areas of science.

Physicists around the world (myself included) are hoping that this week will mark the beginning of a new era of discovery. And not, as some fear, the end of particle physics as we know it.

After 27 months of shutdown and re-commissioning, the Large Hadron Collider has begun its much-anticipated “Season 2”. Deep beneath the Franco-Swiss border, the first physics data is now being collected in CERN’s freshly upgraded detector-temples at the record-breaking collision energy of 13 teraelectonvolts (TeV).

Among the many things that CMS and ATLAS physicists are looking forward to checking up, using the data that the LHC is starting to deliver from 13 TeV proton-proton collisions, one is the WH resonance signal that CMS found in a recent analysis. Mind you, "signal" here is a misnomer: what was seen was most probably a insignificant fluctuation of the background; yet we must keep our mind open to interpretation changes.

The search I am talking about is one CMS did for boosted Higgs bosons recoiling against boosted W bosons, in a "back-to-back" topology (paper is here).
There was something unusual about our recent research collaboration on the science of light, colors and the perception of rainbows: one member of the team wrote his best science in the 1220s.

The Ordered Universe Project sees humanities scholars and scientists come together to carefully read the 13th century scientific treatises of the English polymath Robert Grosseteste. It was set up in the hope that the work’s technical content might receive a deeper analysis than previous scholarship.

The light we receive from the sun is composed of all visible frequencies, among others, and it therefore appears white to our natural detection system - the human eye. Apparently, evolution caused us to develop a vision which works best at the center of the frequency spectrum emitted by the Sun. 

That notwithstanding, I am sure that if you ask the question "what colour is the Sun" to the average Joe, you will get an equal share of "white" and "yellow", and maybe some "red" answers. Besides, who among us has never painted a red Sun in a blue sky as a child ? 
A note to the reader: This article requires following special instructions to watch the videos below.
There are multiple conservation laws in nature meaning these are considered to be scientific truths which are fundamental and foundational to all modern science as we know it.

Perhaps the most familiar or common conservation law in science is that of the conservation of energy.