Being back in blogging mood, I decided I would make a poll among the most affectionate readers of this column - those who will come here to read "blog" pieces and not only "articles which are sponsored on the relevant spots in the main web page of the Science20 site.
The idea is that I have a few topics to offer for the next few posts, and I would offer you to choose which one you are interested to read about. Of course, you could also suggest that I write about something different from my proposed topics - but I do not guarantee that I will comply, as I might feel unfit to the requested tasks. We'll see, though.

Here is a short list of a few things I can spend my time talking about in a post here.

- recent CMS results
- recent ATLAS results
I believe it is appropriate if I restart this column today, after a two-month period of semi-inactivity, with a description of what has  been going on in my private - well, semi-private - life.

A true-muonium only lives for two microseconds. These atoms are made up one positively and one negatively charged elementary particle, also known as muons. Although they have yet to be observed experimentally, a Japanese theoretical physicist has come up with new ways of creating them, in principle anyway, via particle collisions. 

The first method would involve colliding a negatively charged muon and a muonium atom made up of a positive muon and an electron. The second would involve colliding a positively charged muon and a muonic hydrogen atom made up of a proton and a negative muon. . 

When white light is passed through a prism, the rainbow on the other side reveals a rich palette of colors. Theoretical physicists, who have increasingly migrated toward making up stuff using math, now claim using such numbers that quantum theories of gravity must also have a 'rainbow' of sorts, composed of different versions of spacetime. They further predict that instead of a single, common spacetime, particles of different energies essentially sense slightly modified versions.

                  Einstein’s God in physics
   In contrast to the known religious with human prayers as main attribute, Einstein’s God is a sincerely scientific one stimulating new research “I want to know God's thoughts... the rest are details”. Its distinguished substance implicitly ‘personalizes’ the answer to the ultimate “Why” of the empirical and math regularities in physics, principally independent of science successes. Without sense of false embarrassment, it is a satisfaction psychological element in physics research not hurting, but rather inciting that research.
The mass of the Higgs boson reported at the Large Hadron Collider in 2012, 125 GeV, looked lighter than the expected energy scale, about 1 TeV, say researchers at Aalto University in Finland, who now propose that there is more than one Higgs boson, and they are much heavier than the consensus.

New CERN experiments at 0.75 TeV suggested evidence of a second Higgs in that region and some scrambled to embrace it. Dr. Tommaso Dorigo of Science 2.0 dismissed it as a spurious 750 GeV signal observed by ATLAS and CMS in their mass spectra of photon pairs, no different than other spurious signals that ATLAS and CMS have seen in the past.
As a follow-up of yesterday's post on the very opportune Pomeranchuk prize given to Stan Brodsky, I would like to report here on a funny anecdote Stan related to me today. The anecdote is interesting to all of us who believe the world of physics research is fully trans-national - well, it is, but there is apparently some more work to do to improve the situation further.
I was quite happy to hear today that Stan Brodsky, a professor of particle physics and astrophysics at Stanford University, has received together with Victor Fadin the 2015 Pomeranchuk Prize from the Russian Institute for Theoretical and Experimental Physics (ITEP) of Moscow. Stan is a great guy and his contributions to QCD  are of wide range. 

Two weeks have passed since the CERN Jamboree of December 15th, which will be always remembered for the spurious 750 GeV signal observed by ATLAS and CMS in their mass spectra of photon pairs. It is unfortunate, as dozens of very important new measurements and search results were shown by the experiments on that occasion, but they all got overshadowed by a fluctuation.
Here is my holiday card for 2015, a tradition of mine going back to 1990.  Enjoy.

On the back...

I also include a summary of the year.  Here is the stuff on my research efforts: