Optics

If you have ever seen set pieces from a science-fiction show, you have probably been amazed at how cheap and silly the whole things looks. That was the initial concern with high-definition television too. Standard definition hid a lot of cosmetic defects in people and things that are quite obvious in the real world.

Lighting can do the same thing in the real world, of course. Everyone has had a table in their place that looked fine, only to open the windows and have natural light reveal a layer of dust. 


An array of tiny, metallic, U-shaped structures deposited onto a dielectric material creates a new artificial surface that can bend and focus electromagnetic waves the same way an antenna does.


The complexity of biology can befuddle even the most sophisticated light microscopes because biological samples bend light in unpredictable ways, returning difficult-to-interpret information to the microscope and distorting the resulting image.

New imaging technology developed at the Howard Hughes Medical Institute's Janelia Farm Research Campus rapidly corrects for these distortions and sharpens high-resolution images over large volumes of tissue. 


Exposure to short wavelength, blue, light during the biological day directly and immediately improves alertness and performance.

In order to determine which wavelengths of light were most effective in warding off fatigue, the researchers teamed with George Brainard, PhD, a professor of neurology at Thomas Jefferson University, who developed the specialized light equipment used in the study. Researchers compared the effects of blue light with exposure to an equal amount of green light on alertness and performance in 16 study participants for 6.5 hours over a day. Participants then rated how sleepy they felt, had their reaction times measured and wore electrodes to assess changes in brain activity patterns during the light exposure.  


A project to develop fast-blinking LED systems for underwater optical communications has led to discovering that an artificial metamaterial can increase the light intensity and "blink speed" of a fluorescent light-emitting dye molecule.

The nanopatterned layers of silver and silicon in the new material sped up the molecule's blink rate to 76 times faster than normal, while producing an 80-fold increase in its brightness.


Experiments with ultrashort laser pulses support the idea that quantum interactions between molecules help plants, algae, and some bacteria efficiently gather light to fuel their growth - but that's about it. Key details of nature's vital light-harvesting mechanisms remain obscure, and the exact role that quantum physics may play in understanding them is more subtle than was once thought.


Raman scattering mode is an optical phenomenon, discovered in 1928 by the physicist Chandrasekhara Venkata Raman, that involves the inelastic scattering of photons - the physical phenomenon by which a medium can modify the frequency of the light impinging on it. 

The difference corresponds to an exchange of energy (wavelength) between the light beam and the medium. In this way, scattered light does not have the same wavelength as incidental light. The technique has become widely used since the advent of the laser in the industry and for research .


Astronomers have calculated the odds that, sometime during the next 50 years, a supernova occurring in our home galaxy will be visible from Earth and found the chances to be nearly 100% - and it will be visible from telescopes in the form of infrared radiation.


Thermal infrared (IR) energy is emitted from all things which have a temperature greater than absolute zero - so, basically all things worth looking at.

Though mechanical detection of IR radiation has been possible since Samuel Pierpont Langley invented the bolometer in 1880, human eyes are primarily sensitive to shorter wavelength visible light and are unable to detect or differentiate between the longer-wavelength thermal IR "signatures" given off both by living beings and inanimate objects.


Experiments on individual photons conducted by physicists from the Faculty of Physics at the University of Warsaw (FUW) and the Faculty of Applied Physics and Mathematics at the Gdansk University of Technology (PG), have revealed yet another bizarre feature of the quantum world.

When a quantum object is transmitted, its quantum property, whether it behaves as a wave or as a particle, appears to depend on other properties that at first glance have nothing to do with the transmission, they argue.