Biologists have struggled for many years to comprehend the relationships among the major groups of arthropods. Now, a team of researchers has completed new analysis of the evolutionary relationships among arthropods, which may answer many questions that defied previous attempts to unravel how these creatures were connected. The study will appear in Nature later this month.

There are millions of distinct species of arthropods, including all the insects, crustaceans, millipedes, centipedes, spiders, and a host of other animals, all united by having a hard external shell and jointed legs. They are by far the most numerous, and most diverse, of all creatures on Earth — in terms of the sheer number of species, no other group comes close. They make up perhaps 1.6 million of the estimated 1.8 to 1.9 million described species, dominating the planet in number, biomass, and diversity.

The economic aspects of arthropods are also overwhelming. From seafood industries worth billions of dollars annually to the world's economy, to the importance of insects as pollinators of ornamental and agriculturally important crops, to the medical role played by arthropods (e.g. as disease vectors and parasites), to biological control of introduced species, to their role in every known food web, to toxicology and biopharmaceuticals, arthropods are by far the planet's most important group of animals.

"We've never really known how arthropods, the most successful animals on Earth, evolved into the diversity we see today," said research scientist and co-author Dr. Regina Wetzer. "For me, what makes this study really exciting is getting such a solid understanding of how these animals are related, so that now we can better understand how they evolved."

This animal, Speleonectes tulumensis, is from a group of rare, blind, cave-dwelling crustaceans called "remipedes." The new analysis in Nature shows that the remipedes are the crustaceans most closely related to the insects. Remipedes and insects together are now shown to be a sister group to all the other crustacea including the crabs, shrimps, and lobsters.

(Photo Credit: Simon Richards)

Because of their amazing diversity, deciphering the evolutionary history and relationships among the major subgroups of arthropods has proven difficult. Scientists have tried using various combinations of features, in recent years including DNA sequences, to try to understand which groups are related through common ancestors. To date, those attempts have been stymied by the sheer number of species and wild shape variations between the various groups.

One of the most important results of the study, researchers say, is support for the hypothesis that the insects evolved from a group of crustaceans. So flies, honeybees, ants, and crickets all branched off the arthropod family tree from within the lineage that gave rise to today's crabs, shrimp, and lobsters. Another important finding is that the "Chelicerata" (a group that includes the spiders, scorpions, ticks, and mites) branched off very early, earlier than the millipedes, centipedes, crustaceans, and insects. That means that the spiders, for example, are more distantly related to the insects than many researchers previously thought.

Researchers approached the problem of illuminating the arthropod family tree by using DNA sequences obtained from 75 species carefully selected to sample the range of arthropod diversity. Many previous analyses were based on the sequences of a handful of genes. The researchers in this study, knowing the daunting diversity they faced, used DNA sequence information from as many genes as they could. In the end, they were able to apply data from 62 protein-coding genes to the problem, leading to an extremely well-supported analysis.