Banner
AI Reveals 10X More Yellowstone Volcano Earthquakes Than Known Before

Yellowstone was the first national park designated in the United States and is a popular tourist...

Counterfeited In China: US Tariffs May Hurt Criminals The Most

In early 2025, the Trump administration began to place tariffs on countries that already had them...

RSV Vaccine For Pregnant Women Leads To 72% Fewer Babies Hospitalized With The Virus

Real world data show that the respiratory syncytial virus (RSV) vaccine rolled out for pregnant...

Bubbles In Ice Could Be A Future Medium For Secret Codes

Scholars have developed a method to encode binary and Morse code messages in ice. A 'message in...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Though the cell membrane is a protective barrier, it also plays a role in letting some foreign material in — via ion channels that dot the cell’s surface. Now new research from the Nobel Prize-winning laboratory that first solved the atomic structure of several such channels shows that their function is controlled in part by a complex interaction between a channel’s voltage sensor and the cell membrane immediately adjacent to it.

The cell membrane is a specialized environment, home to a variety of proteins that enable the cell to interact with its environment. One specific family of proteins, voltage-gated channels, are especially important in conducting signals along and between nerve cells.

Hunting for traces of life on Mars calls for two radically different strategies, says Arizona State University professor Jack Farmer. Of the two, he says, with today’s exploration technology we can most easily look for evidence for past life, preserved as fossil "biosignatures" in old rocks.

Farmer is a professor of geological sciences in ASU’s School of Earth and Space Exploration, where he heads the astrobiology program. He is reporting on his work today (Feb. 16) at the annual meeting of the American Association for the Advancement of Science in San Francisco.

"Searching for extraterrestrial life must follow two alternative pathways, each requiring a different approach and tools," Farmer says. "If we're looking for living organisms, we are doing exobiology.

Using corncob waste as a starting material, researchers have created carbon briquettes with complex nanopores capable of storing natural gas at an unprecedented density of 180 times their own volume and at one seventh the pressure of conventional natural gas tanks.

The breakthrough, announced today in Kansas City, Mo., is a significant step forward in the nationwide effort to fit more automobiles to run on methane, an abundant fuel that is domestically produced and cleaner burning than gasoline.


Researchers at the University of Missouri-Columbia and the Midwest Research Institute in Kansas City have developed a method to convert corncob waste into a carbon "sponge" with nanoscale pores.

Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by the National Institute of Standards and Technology (NIST). The effect, which is reversible, adds a new dimension to designing superconducting systems—particularly for electric power applications—and it also provides a new tool that will help scientists probe the fundamental mechanism behind why these materials carry current with no resistance.


Magneto-optical image of magnetic fields within a YBCO superconductor showing electrically connected grains (yellow) and grain boundaries (green) that form barriers to superconducting currents.

Liquid or gas flowed through cracks penetrating underground rock on ancient Mars, according to a report based on some of the first observations by NASA's Mars Reconnaissance Orbiter. These fluids may have produced conditions to support possible habitats for microbial life.

These ancient patterns were revealed when the most powerful telescopic camera ever sent to Mars began examining the planet last year. The camera showed features as small as approximately 3 feet (one meter) across. Mineralization took place deep underground, along faults and fractures.

“Regressive evolution,” or the reduction of traits over time, is the result of either natural selection or genetic drift, according to a study on cavefish by researchers at New York University’s Department of Biology, the University of California at Berkeley’s Department of Integrative Biology, and the Harvard Medical School. Previously, scientists could not determine which forces contributed to regressive evolution in cave-adapted species, and many doubt the role of natural selection in this process.