Fake Banner
Conferences Good And Bad, In A Profit-Driven Society

Nowadays researchers and scholars of all ages and specialization find themselves struggling with...

USERN: 10 Years Of Non-Profit Action Supporting Science Education And Research

The 10th congress of the USERN organization was held on November 8-10 in Campinas, Brazil. Some...

Baby Steps In The Reinforcement Learning World

I am moving some baby steps in the direction of Reinforcement Learning (RL) these days. In machine...

Restoring The Value Of Truth

Truth is under attack. It has always been, of course, because truth has always been a mortal enemy...

User picture.
picture for Hank Campbellpicture for Patrick Lockerbypicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
One of the few physics measurements that the LHC experiments are already in the position of producing, with the week-worth of proton-proton collision data they have collected last December, is that of the Bose-Einstein intereference between identical bosons.
There are twenty-four elementary fermions in the standard model. Sure, they are arranged in a very tidy, symmetrical structure of three families of eight fermions (two leptons and six quarks), which is not too unpleasant to behold. And of course, if one is willing to forget the fact that the quantum-chromodynamical charge of quarks does make them different, then the picture is even tidier: 12 fermions, six of them quarks and six of them leptons, arranged in three families of four.
It has become a pleasant habit for me to visit Bassano del Grappa every February for a conference on particle physics aimed at high-school students. Thanks to the efforts and the skill of dr. Sergio Lucisano, the schools of Bassano organize every year several conferences on physics and cosmology. These conferences are connected with the european program of the Masterclasses, but they extend the scope considerably into the history of physics and other topics of interest for the students.
I remember very well the very first meeting of the Heavy Flavour Working Group in CDF that I attended in the summer of 1992. I was a summer student back then, and my understanding of spoken English was not perfect, so as a graduate student started discussing with his slides the results he was getting on the top quark mass reconstructed in simulated single-lepton top pair decays, I struggled to follow his talk -the physics was just as hard to follow as the English.
"In 1934, L.E.Kinsler at the California Institute of technology was studying the Zeeman effect as a means for evaluating the charge-to-mass ratio of the electron, e/m. The deduction of e/m from the measured wavelength differences involves, in addition to a high-precision measurement of the magnetic field, a knowledge of the way in which the individual electron spins and orbital angular momenta are coupled. However, there are certain quantities or combinations of quantities that are independent of the nature of the coupling.
One of the positive side-effects of preparing a seminar is being forced to get up-to-date with the latest experimental and theoretical developments on the topic. And this is of particular benefit to lazy bums like myself, who prefer to spend their time playing online chess than reading arxiv preprints.

It happened last week, in the course of putting together a meaningful discussion of the state of the art in global electroweak fits to standard model observables, and their implications for the unknown mass of the Higgs boson: by skimming the hep-ph folder I found a very recent paper by a colleague in Padova, which I had shamefully failed to notice in the last couple of careless visits.