Banner
Brown Fat’s “Off-Switch” Isn't A New Ozempic Diet Exploit

Brown adipose tissue is different from the white fat around human belly and thighs. Brown fat helps...

Opioid Addicts Are Less Likely To Use Legal Opioids At The End Of Their Lives

With a porous southern border, street fentanyl continues to enter the United States and be purchased...

More Like Lizards: Claim That T. Rex Was As Smart As Monkeys Refuted

A year ago, corporate media promoted the provocative claim that dinosaurs like Tyrannorsaurus rex...

Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Genetic modification holds the promise of bringing locally grown food crops to climates where farming has been traditionally difficult. Doing that means optimizing the genetics of crops in some ways without impacting them in others.

A new tool for rice genetics has made that a little bit easier. It allows rice breeders to surgically inactivate genes that confer unwanted properties.

There are many different strains of rice grown in different parts of the world and they have thrived because they are adapted to the region they grow in. In the past, introducing a gene with a beneficial modification would require years and years of breeding so that the other genes responsible for the target strains being so well adapted to their local environment were not impacted.

China’s growing participation in international trade has been one of the most prominent features of its economic reform. It is the world’s third-largest exporter, and the fastest growing exporter among members of the World Trade Organisation (WTO), which it joined in December 2001.

The secret of China’s exporting success may lie in unfair production subsidies, according to new research presented at the Royal Economics Society annual conference by a team from The University of Nottingham’s Globalisation and Economic Policy Centre (GEP).

The economists behind the research say it raises serious questions about whether China is being fair with its trading partners.

Sleep apnea is a condition characterized by temporary breathing interruptions during sleep, in which disruptions can occur dozens or even hundreds of times a night. According to the National Institutes of Health, it affects more than twelve million Americans.

Researchers at the University of Pennsylvania School of Medicine have provided a detailed look at the molecular pathways underlying sleep apnea and found that, in an animal model of sleep apnea, poorly folded proteins accumulate in one compartment of a muscle nerve cell, which, under certain conditions, tells a cell to heal itself or destroy itself.

The vision system used to process color is separate from that used to detect motion, according to a new study by researchers at New York University’s Center for Developmental Genetics and in the Department of Genetics and Neurobiology at Germany’s University of Würzburg.

The findings run counter to previous scholarship that suggested motion detection and color contrast may work in tandem.

Whether motion vision uses color contrast is a controversial issue that has been investigated in several species--from insects to humans. In human vision, it had been widely believed that color and motion were processed by parallel pathways. More recently, however, the complete segregation of motion detection and color vision came into question.

Professor John Anthony Allan from King’s College London and the School of Oriental and African Studies has been named the 2008 Stockholm Water Prize Laureate. Professor Allan pioneered the development of key concepts in the understanding and communication of water issues and how they are linked to agriculture, climate change, economics and politics.

People do not only consume water when they drink it or take a shower. In 1993, Professor Allan, 71, strikingly demonstrated this by introducing the “virtual water” concept, which measures how water is embedded in the production and trade of food and consumer products. Behind that morning cup of coffee are 140 litres of water used to grow, produce, package and ship the beans. That is roughly the same amount of water used by an average person daily in England for drinking and household needs. The ubiquitous hamburger needs an estimated 2,400 litres of water. Per capita, Americans consume around 6,800 litres of virtual water every day, over triple that of a Chinese person.

Researchers at the National Institute of Standards and Technology (NIST) have set the stage for building the “evolutionary link” between the microelectronics of today built from semiconductor compounds and future generations of devices made largely from complex organic molecules. In an upcoming paper in the Journal of the American Chemical Society, a NIST team demonstrates that a single layer of organic molecules can be assembled on the same sort of substrate used in conventional microchips.

The ability to use a silicon crystal substrate that is compatible with the industry-standard CMOS (complementary metal oxide semiconductor) manufacturing technology paves the way for hybrid CMOS-molecular device circuitry—the necessary precursor to a “beyond CMOS” totally molecular technology—to be fabricated in the near future.


Side and top views of the NIST molecular resistor. Above are schematics showing a cross-section of the full device and a close-up view of the molecular monolayer attached to the CMOS-compatible silicon substrate. Below is a photomicrograph looking down on an assembled resistor indicating the location of the well. Credit: NIST