Fake Banner
Machine Learning For Jet Physics: New, Or Just Cool, Ideas

As I mentioned in yesterday's post, there is a workshop going on this week at Fermilab, where 110...

HEP Half A Life Ago

When I  took Hwy 88-E toward Fermilab, shortly after landing at the Chicago O' Hare Airport...

Machine Learning For Jet Physics At Fermilab

I flew to the US yesterday to get to Fermilab, where I am following a workshop titled Machine learning...

Watch Venice Under Third Biggest Flood In Recorded History

Right now (3PM Central European Time), Venice is being hit by the third biggest flood in over a...

User picture.
picture for Hank Campbellpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelmanpicture for Heidi Henderson
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS experiment at the CERN LHC. He coordinates the European network... Read More »

Blogroll
In the previous post I discussed the generalities of "diboson production" at the LHC. Dibosons are pairs of elementary bosons - the photon (carrier of electromagnetic interactions), the W and Z bosons (carriers of the weak interaction, respectively charged and neutral), the gluon (carrier of the strong interaction, and coming in 8 undistinguishable varieties), and the Higgs particle. 
After one quite frantic November, I emerged victorious two weeks ago from the delivery of a 78-pages, 49-thousand-word review titled "Hadron Collider Searches for Diboson Resonances". The article, which will be published in the prestigious "Progress in Particle and Nuclear Physics", an Elsevier journal with an impact factor above 11 (compare with Physics Letters B, IF=4.8, or Physical Review Letters, IF=8.5, to see why it's relevant), is currently in peer review, but that does not mean that I cannot make a short summary of its contents here.
Peter Heine Nielsen, a Danish chess Grandmaster, summarized it quite well. "I always wondered, if some superior alien race came to Earth, how they would play chess. Now I know". The architecture that beat humans at the notoriously CPU-impervious game Go, AlphaGo by Google Deep Mind, was converted to allow the machine to tackle other "closed-rules" games. Successively, the program was given the rules of chess, and a huge battery of Google's GPUs to train itself on the game. Within four hours, the alien emerged. And it is indeed a new class of player.
It was nice to find John Duffield's review of my book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab" in the Amazon site today.
An experiment designed to study neutrinos at the Gran Sasso Laboratories in Italy is under attack by populistic media. Why should you care? Because it's a glaring example of the challenges we face in the XXI century in our attempt to foster the progress of the human race.
What is a neutrino? Nothing - it's a particle as close to nothing as you can imagine. Almost massless, almost perfectly non-interacting, and yet incredibly mysterious and the key to the solution of many riddles in fundamental physics and cosmology. But it's really nothing you should worry about, or care about, if you want to lead your life oblivious of the intricacies of subnuclear physics. Which is fine of course - unless you try to use your ignorance to stop progress.
Following the appearance of Kent Staley's review of my book "Anomaly!" in the November 2017 issue of Physics Today, the online site of the magazine offers, starting today, an interview with yours truly. I think the piece is quite readable and I encourage you to give it a look. Here I only quote a couple of passages for the laziest readers.