Fake Banner
On A Roll

What? Another boring chess game?Buzz off, this is my blog, and if I feel like posting a chess game...

When The Attack Plays Itself

After a very intense day at work, I sought some relaxation in online blitz chess today. And the...

Toponium Found By CMS!

The highest-mass subnuclear particle ever observed used to the the top quark. Measured for the...

The Problem With Peer Review

In a world where misinformation, voluntary or accidental, reigns supreme; in a world where lies...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
By and large, particle physicists confronted with the need to awe and enthuse an audience of laypersons will have no hesitation in choosing to speak about the Higgs boson and its mysteries - undoubtedly a fascinating story that requires one to start with the 1960ies and the intuition of a handful of theoretical physicists, and then grows epic in a crescendo of colliders that sought and missed the Higgs boson, and then the LHC which finally found the elusive signal of production and decay of that particle.
Last week I was in Amsterdam, where I attended the first European AI for Fundamental Physics conference (EUCAIF). Unfortunately I could not properly follow the works there, as in the midst of it I got grounded by a very nasty bronchial bug. Then over the weekend I was able to drag myself back home, and today, still struggling with the after-effects, am traveling to Rome for another relevant event.
From April 30 to May 3 more than 300 researchers in fundamental physics will gather in Amsterdam for the first edition of the EUCAIF conference, an initiative supported by the APPEC, NuPecc and ECFA consortia, which is meant to structure future European research activities in fundamental physics with Artificial Intelligence technologies.


In a world where we live hostages of advertisement, where our email addresses and phone numbers are sold and bought by companies eager to intrude in our lives and command our actions, preferences, tastes; in a world where appearance trumps substance 10 to zero, where your knowledge and education are less valued than your looks, a world where truth is worth dimes and myths earn you millions - in this XXI century world, that is, Universities look increasingly out of place. 
Peter Higgs passed away yesterday, at the age of 94. The scottish physicist, a winner of the 2013 Nobel Prize in Physics together with Francois Englert, hypothesized in 1964 the existence of the most mysterious elementary particle we know of, the Higgs boson, which was only discovered 48 years later by the ATLAS and CMS collaborations at the CERN Large Hadron Collider. 


In the course of Statistics for Data Analysis I give every spring to PhD students in Physics I spend some time discussing the apparently trivial problem of evaluating the significance of an excess of observed events N over expected background B. 

This is a quite common setup in many searches in Physics and Astrophysics: you have some detection apparatus that records the number of phenomena of a specified kind, and you let it run for some time, whereafter you declare that you have observed N of them. If the occurrence of each phenomenon has equal probability and they do not influence one another, that number N is understood to be sampled from a Poisson distribution of mean B.