Descent with modification means that all life on Earth probably came from one common ancestor – a single-celled organism – We just have to speculate and create models for what it may have looked like, how it lived and how it evolved into today's modern cell.

So model we do and a recent paper uses mathematical modeling to speculate that life's Last Universal Common Ancestor (LUCA) had a 'leaky' membrane, which, if would, would help scientists answer two of biology's biggest questions:

1. Why all cells use the same bizarre, complex mechanism to harvest energy

2. Why two types of single-celled organism that form the deepest branch on the tree of life – bacteria and archaea – have completely different cell membranes

Rangeomorphs were unlike any modern organism, which has made it difficult to determine how they fed, grew or reproduced, and therefore difficult to link them to any particular modern group.

They looked like plants but evidence points to the fact that rangeomorphs were actually some of the earliest animals.

Starting 541 million years ago, the conditions in the oceans changed quickly with the start of the Cambrian Explosion – a period of rapid evolution when most major animal groups first emerge in the fossil record and competition for nutrients increased dramatically.

Researchers working on biomimicry have produced the first structural color change in an animal by influencing evolution: They've changed the color of the butterfly Bicyclus anynana from brown to violet - and needed only six generations of selection to do it.

Little is known about how structural colors in nature evolved, although researchers have studied such mechanisms extensively in recent years. Most attempts at biomimicry involve finding a desirable outcome in nature and simply trying to copy it in the laboratory.

The discovery published in Proceedings of the National Academy of Sciences may have implications for physicists and engineers trying to use evolutionary principles in the design of new materials and devices.

Researchers have been able to experimentally reproduce morphological changes in mice which have taken millions of years to occur. Through small and gradual modifications in the embryonic development of mice teeth, induced in the laboratory, they obtained teeth which morphologically are very similar to those observed in the fossil registry of rodent species which separated from mice millions of years ago.

To modify the development of their teeth, the team from the University of Helsinki and the Universitat Autònoma de Barcelona worked with embryonic teeth cultures from mice not coded by the ectodysplasin A (EDA) protein, which regulates the formation of structures and differentiation of organs in the embryo throughout its development.

One of the most diverse families in the ocean today, marine bivalve mollusks - called Lucinidae or lucinids - originated more than 400 million years ago in the Silurian period, with adaptations and life habits like those of its modern members. 

About 500 lucinid species exist today, with by far the highest diversity in shallow-sea seagrass meadows. They did it all with a little help from symbiotic friends.

At its origin, the Lucinidae family remained at very low diversity until the rise of mangroves and seagrasses near the end of the Cretaceous. Mangroves and seagrasses created protective habitats in which the bivalve mollusks could thrive, in turn providing benefit through a sort of tri-level symbiosis. 

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers were also an epigenetic experiment — a way to monitor changes resulting from external rather than genetic influences.

The results in those families have suggested that the body's physiological responses to hardship could be inherited. If so, the underlying mechanism remained a mystery.

In a recent Cell paper, researchers explore a genetic mechanism that passes on the body's response to starvation to subsequent generations of worms, with potential implications for humans also exposed to starvation and other physiological challenges, such as anorexia nervosa.

Parts of the primordial soup in which life arose have been maintained in our cells today, according to a new paper.

The articles in the Journal of Biological Chemistry
 discusses how cells in plants, yeast and very likely also in animals still perform ancient reactions thought to have been responsible for the origin of life – some four billion years ago.

The primordial soup theory suggests that life began in a pond or ocean as a result of the combination of metals, gases from the atmosphere and some form of energy, such as a lightning strike, to make the building blocks of proteins which would then evolve into all species.

Models for the evolution of life are now being developed to try and clarify the long term dynamics of an evolving system of species. Specifically, a recent model proposed by Petri Kärenlampi from the University of Eastern Finland in Joensuu accounts for species interactions with various degrees of symmetry, connectivity, and species abundance. This is an improvement on previous, simpler models, which apply random fitness levels to species.

The findings demonstrate that the resulting replicator ecosystems do not appear to be a self-organized critical model, unlike the so-called Bak Sneppen model, a reference in the field. The reasons for this discrepancy are not yet known.

Woodrats lost their ability to eat toxic creosote bushes after antibiotics killed their gut microbes. Woodrats that never ate the plants were able to do so after receiving fecal transplants with microbes from creosote-eaters, University of Utah biologists found.

The new study confirms what biologists long have suspected: bacteria in the gut – and not just liver enzymes – are "crucial in allowing herbivores to feed on toxic plants," says biologist Kevin Kohl, a postdoctoral researcher and first author of a new paper in Ecology Letters.

A new paper in Astrobiology says we will need to look to oceans to find life on Earth-like planets. Most computer simulations of habitable climates on Earth-like planets have focused on their atmospheres, but as is easily seen on Venus, the presence of oceans is vital for optimal climate stability and habitability.

Their model simulated pattern of ocean circulation on a hypothetical ocean-covered Earth-like planet. They looked at how different planetary rotation rates would impact heat transport with the presence of oceans taken into account.