Physics

Fermions tend to avoid each other and cannot "travel" in close proximity. Demonstrated by a team at the Institut d'optique (CNRS/Université Paris 11, Orsay-Palaiseau), this result is described in detail in the January 25, 2007 issue of Nature. It marks a major advance in our understanding of phenomena at a quantum scale.

For many years, the theory of quantum mechanics stipulated that certain particles, the fermions(1), were incapable of "travelling" in close proximity.

Physicists at JILA have demonstrated that the warmer a surface is, the stronger its subtle ability to attract nearby atoms, a finding that could affect the design of devices that rely on small-scale interactions, such as atom chips, nanomachines, and microelectromechanical systems (MEMS).


JILA scientists measured how temperature affects the Casimir-Polder force using an apparatus that holds four small squares of glass inside a vacuum chamber. A cloud of ultracold atoms in a Bose-Einstein Condensate (BEC) was held a few micrometers below one piece of glass, and the force was calculated based on the wiggling of the BEC. Warmer glass magnified the attraction between the surface and the atoms. (Credit: E.

Physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have taken the first ever two-dimensional pictures of a "frequency comb," providing extra information that enhances the comb's usefulness in optical atomic clocks, secure high-bandwidth communications, real-time chemical analysis, remote sensing, and the ultimate in precision control of atoms and molecules.


False-color images of the "fingerprints" of molecular iodine, each taken under different experimental conditions using a NIST frequency brush created with an ultrafast visible laser. The squares within each frame reveal the frequency and intensity of light from individual "bristles" of the brush.

Researchers at the National Institute of Standards and Technology (NIST) have developed a sensitive new method for rapidly assessing the quality of carbon nanotubes. Initial feasibility tests show that the method not only is faster than the standard analytic technique but also effectively screens much smaller samples for purity and consistency and better detects sample variability.


A new NIST method for rapidly assessing the quality of carbon nanotubes was evaluated in part by comparing the results to electron micrographs, which revealed uneven composition such as large bundles of nanotubes and impurities such as metallic particles. (Color added.) (Credit: NIST)

Peering backward in time to an instant after the big bang, physicists at the University of Wisconsin-Madison have devised an approach that may help unlock the hidden shapes of alternate dimensions of the universe.

A new study demonstrates that the shapes of extra dimensions can be "seen" by deciphering their influence on cosmic energy released by the violent birth of the universe 13 billion years ago. The method, published today (Feb.

A new cosmological model demonstrates the universe can endlessly expand and contract, providing a rival to Big Bang theories and solving a thorny modern physics problem, according to University of North Carolina at Chapel Hill physicists.

The cyclic model proposed by Dr. Paul Frampton, Louis J. Rubin Jr. distinguished professor of physics in UNC’s College of Arts & Sciences, and co-author Lauris Baum, a UNC graduate student in physics, has four key parts: expansion, turnaround, contraction and bounce.

John Conway says, "I’ve been looking for the Higgs boson for almost 20 years" which sounds like a long time if you are a young scientist but I have a watch missing for 35, so it isn't that impressive.

What is impressive his description of what happened when he thinks he found Higgs at CERN.

I thought the only "Quark" I would ever see was that TV show in the 1980s but sometimes scientific progress creeps and sometimes it leaps. We may be in for a leap.

Anyway, I can't do the article any justice here. Go there and read it for yourself and by the time you come back I will have something to complain about.