Chemistry

The safest possible future for advancing nanotechnology in a sustainable world can be reached by using green chemistry, says James E. Hutchison, a professor of chemistry at the University of Oregon.

“Around the world, there is a growing urgency about nanotechnology and its possible health and environmental impacts,” Hutchison said in his talk Sunday during a workshop at the annual meeting of the American Association for the Advancement of Science. “There is a concern that these issues will hinder commercialization of this industry.”

Scientists need to take a proactive approach to advancing from the current discovery phase in the creation of nanomaterials into a production phase that is efficient and reduces waste, he said.

There's science in love, you know, and that means there's science in Valentine's Day. Science on Valentine's Day is like cold fusion instead of ethanol. Completely wonderful. And we have it all right here.

Not sure who to date? Garth Sundem answers it in The Valentine's Day Man-O-Meter. Be sure to take it as gospel because he never just makes stuff up.

In work that could dramatically boost the capabilities of "lab on a chip" devices, MIT researchers have created a way to use tiny bubbles to mimic the capabilities of a computer.

The team, based at MIT's Center for Bits and Atoms, reports that the bubbles in their microfluidic device can carry on-chip process control information, just like the electronic circuits of a traditional microprocessor, while also performing chemical reactions. The work will appear in the Feb. 9 issue of Science.


MIT researchers have developed a computer chip that runs on microbubbles like these. (Photo courtesy of Manu Prakash)

Scientists at the Scripps Research Institute and the University of Wisconsin have identified two small molecules with promising activity against neurotoxins produced by the Clostridium botulinum, a compound so deadly it has been labeled one of the six highest-risk bioterrorism agents by the Centers for Disease Control and Prevention.

Because of the high cost and limited applicability of currently available treatments, the newly identified compounds have the potential to fill the existing therapy gap and to provide protection against a bioterrorism attack using the toxin.

The study is being published the week of February 5 in an online edition of the Proceedings of the National Academy of Sciences.

"Our study is an important milestone in the fight against biological terrorism," s

For Duke University theoretical chemist David Beratan, the results of his 15 years of studying how electrons make their way through some important protein molecules can be summed up with an analogy: how do big city dwellers get from here to there?

It's often swiftest to take the subway, Beratan notes, but riders may sometimes elect to alter their route by exiting the train for a short cab ride or a walk down the street. And they also may have to work around a route that is temporarily out of service.


David Beratan poses with subway route map. (Photo Credit: Megan Morr)

How can defense or intelligence agencies safeguard the security of top-secret data protected by a computation device the size of a single molecule?

With cryptography approaching that sobering new era, scientists in Israel are reporting development of what they term the first molecular system capable of processing password entries. Abraham Shanzer and colleagues describe their "molecular keypad lock" in the Jan. 17 issue of the weekly Journal of the American Chemical Society.

Electronic keypad locks long have been fixtures on home security systems and other devices that require a password.