Clinical Research

Results of two studies funded by Project A.L.S. and appearing in today's advance online publication of Nature Neuroscience demonstrate that embryonic stem cells may provide a new tool for studying disease mechanisms and for identifying drugs to slow ALS, also known as Lou Gehrig's disease.

Both studies were completed by researchers participating in an ongoing collaboration with the Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, the world's first and only privately funded laboratory focused exclusively on stem cells and ALS.

Just a few months after their landmark article in Science magazine reporting the discovery of strong links between variations in a gene that codes for a cellular receptor involved in controlling inflammation and Crohn's disease, a consortium of U.S. and Canadian researchers is reporting in today's online issue of Nature Genetics that they have discovered several more genetic variations that are strongly linked to an increased risk for the disease. The discovery of these Crohn's disease-associated genetic variants has identified several key biological pathways that will be the focus of further research to understand how the debilitating inflammatory process is initiated and maintained in many cases of the disease.

Human bone marrow has been used to create early-stage sperm cells for the first time, a scientific step forward that will help researchers understand more about how sperm cells are created.

The research published in the academic journal Reproduction: Gamete Biology, was carried out in Germany* by a team of scientists led by Professor Karim Nayernia, formerly of the University of Göttingen but now of the North-east England Stem Cell Institute (NESCI), based at the Centre for Life in Newcastle upon Tyne.


How Prof Nayernia and his team cultured from human bone marrow. Credit: Newcastle University, England

The two most prevalent forms of genetic mental retardation, Fragile X and Down syndromes, may share a common cause, according to researchers at Stanford University School of Medicine. The problem, a crippled communication network in the brain, may also be associated with autism.

Got milk? Weightlifters will want to raise a glass after a new study found that milk protein is significantly better than soy at building muscle mass.

The study, conducted by a team of researchers at McMaster University’s Department of Kinesiology, was recently published in the American Journal of Clinical Nutrition. It compared how much muscle protein young men gained after completing a heavy weight workout followed by consumption of equivalent amounts of protein as either fluid skim milk or a soy drink.

Virginia Commonwealth University researchers have decoded the genome of a bacteria normally present in the healthy human mouth that can cause a deadly heart infection if it enters the bloodstream.

The finding enables scientists to better understand the organism, Streptococcus sanguinis, and develop new strategies for treatment and infection prevention.


Transmission electron micrograph of S. sanguinis. Credit: Image courtesy of Lauren Turner/VCU.

Geneticists have discovered a new gene that may put individuals at higher risk of developing cardiovascular disease.

The identification of the gene, called kalirin, implicates a biological mechanism never before linked to cardiovascular disease, according to the Duke researchers who led the study. Further study of this new clue could lead to novel ways to treat or even prevent the disease, the researchers said.

"The ultimate goal is to determine who will develop cardiovascular disease," said lead study investigator Liyong Wang, Ph.D., a research associate at the Duke Center for Human Genetics. "Our discovery could lead to a clinical tool for assessing a person's risk of coronary artery disease, so that physicians can try to prevent the disease from progressing."

The University of Wisconsin School of Medicine and Public Health is among the first medical centers in the country taking part in a novel clinical trial investigating if a subject's own stem cells can treat a form of severe coronary artery disease.

The trial, just underway at UW Hospital and Clinics, is enrolling subjects in the Autologous Cellular Therapy CD34-Chronic Myocardial Ischemia (ACT34-CMI) Trial. The first patient underwent the procedure March 7. Because the study is randomized and "double-blinded," however, neither the patient nor the research physician knows if he received his own stem cells or a placebo substance.

This trial is the first human Phase II adult stem cell therapy study in the U.S.

A new study from Joslin Diabetes Center may shed light on why some people can eat excessive amounts of food and not gain weight or develop type 2 diabetes, while others are more likely to develop obesity and this most common form of diabetes on any diet. The study, which used two strains of mice with differing tendencies to gain weight and develop diabetes on a high-fat diet, identified genetic and cellular mechanisms that may prevent certain mice on a calorie-dense diet from gaining weight and developing metabolic syndrome.

“Although this study was done with mice, it points out new mechanisms that may underlie the ability of genetically different mice -- and perhaps genetically different people -- to not gain much weight on high caloric diets,” said lead investigator C.

The function of an enzyme in the brain – strongly linked to a number of major brain diseases such as Alzheimer's, schizophrenia and bi-polar disorder – has been identified for the first time by researchers at the University of Bristol, UK.

These findings, published today in Neuron, will help in the understanding of how memories are laid down and what goes wrong in these disorders.

The research showed how controlling the activity of glycogen synthase kinase-3 (GSK3) might prevent a memory being erased by improving the strength of connections between neurons in the brain, thus allowing better consolidation of new information.

Professor Collingridge from the University of Bristol said: "While GSK3 has previously been implicated in major neurological disorders, until now its rol