For the first annulus, A(1), with radii r(1) and r(2), n=4 is the minimum value of n such that a regular n-gon lies wholly within or on the boundary of A(1).
Find the smallest value of n, such that a regular n-gon will not fall outside the annulus A(m) bounded by r(m) and r(m+1) for values of m = 2, 3 and 4.
Also, what is the smallest value of n for A(50)?
Solutions will be published within the comments below unless so lengthy as to warrant a whole new blog post.
Comments