Scientists have developed a new approach that could eventually be used to treat Duchenne muscular dystrophy, using CRISPR/Cas9 to correct genetic mutations that cause the disease.
CRISPR/Cas9 is a naturally occurring reaction that bacteria use to fight viruses. In 2012, scientists discovered they could adapt the process to make cuts in specific human DNA sequences. One part of the CRISPR/Cas9 system acts like a navigation system and can be programmed to seek out a specific part of the genetic code — a mutation, for example. The second part of the system can cut mutations out of the genetic code, and in some cases can replace the mutation with a normal genetic sequence.
The stem cell gene therapy could be applicable for 60 percent of people with Duchenne, which affects approximately 1 in 5,000 boys in the U.S. and is the most common fatal childhood genetic disease.
Duchenne typically occurs through one mutation in a gene called dystrophin, which makes a protein with the same name. In people without the disease, the dystrophin protein helps strengthen and connect muscle fibers and cells. There are hundreds of mutations in the dystrophin gene that can lead to the disease, but in 60 percent of people with Duchenne, their mutation will occur within a specific hot spot of the gene.
Duchenne mutations cause abnormally low production of the dystrophin protein, which in turn causes muscles to degenerate and become progressively weaker. Symptoms usually begin in early childhood; patients gradually lose mobility and typically die from heart or respiratory failure around age 20. Some current medications can treat the disease’s symptoms but none can stop the progression of the disease or significantly improve patients’ quality of life — and there is currently no way to reverse or cure the disease.
The platform developed by the UCLA researchers focuses on the hot spot of the dystrophin gene. To test the platform, they obtained skin cells from consenting patients at the Center for Duchenne Muscular Dystrophy, all of whom had mutations that fell within the dystrophin gene hot spot. The researchers reprogrammed the cells to create induced pluripotent stem cells in an FDA-compliant facility at the Broad Stem Cell Research Center; the use of this facility is an important step in the process as preclinical research moves toward human clinical trials. Induced pluripotent stem cells, or iPS cells, have the ability to become any type of human cell while also maintaining the genetic code from the person they originated from.
Next, the scientists removed the Duchenne mutations in the iPS cells using a gene editing platform they developed that uses the CRISPR/Cas9 technology. (CRISPR stands for “clustered regularly interspaced short palindromic repeats.”) The platform targets and removes specific regions of the hot spot of the dystrophin gene, which harbors 60 percent of Duchenne mutations, which restores the missing protein.
Once the UCLA researchers had produced iPS cells that were free from Duchenne mutations, they differentiated the iPS cells into cardiac muscle and skeletal muscle cells and then transplanted the skeletal muscle cells into mice that had a genetic mutation in the dystrophin gene. They found that the transplanted muscle cells successfully produced the human dystrophin protein.
The result was the largest deletion ever observed in the dystrophin gene using CRISPR/Cas9, and the study was the first to create corrected human iPS cells that could directly restore functional muscle tissue affected by Duchenne. (Previously, scientists had used CRISPR/Cas9 to repair mutations that affect smaller numbers of people with Duchenne, and in cell types that weren’t necessarily clinically relevant.)
“This method is likely 10 years away from being tested in people,” said Melissa Spencer, professor of neurology in the UCLA David Geffen School of Medicine. “It is important that we take all the necessary steps to maximize safety while quickly bringing a therapeutic treatment to patients in clinical trials.”
Stem Cell Gene Therapy Platform For Duchenne Muscular Dystrophy
Related articles
- Gene-editing Technique Successfully Stops Progression Of Duchenne Muscular Dystrophy
- CRISPR: Bacterial Viral Defense Targets Duchenne Muscular Dystrophy
- FDA Gives Approval For Duchenne Muscular Dystrophy Pediatric Treatment
- Corrected Induced Pluripotent Stem Cells Spark Muscle Regeneration
- Repair The Muscles In Muscular Dystrophy, Not The Genetic Defect
Comments