Banner
Opioid Addicts Are Less Likely To Use Legal Opioids At The End Of Their Lives

With a porous southern border, street fentanyl continues to enter the United States and be purchased...

More Like Lizards: Claim That T. Rex Was As Smart As Monkeys Refuted

A year ago, corporate media promoted the provocative claim that dinosaurs like Tyrannorsaurus rex...

Study: Caloric Restriction In Humans And Aging

In mice, caloric restriction has been found to increase aging but obviously mice are not little...

Science Podcast Or Perish?

When we created the Science 2.0 movement, it quickly caught cultural fire. Blogging became the...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Many children with autism have elevated blood levels of serotonin – a chemical with strong links to mood and anxiety. But what relevance this “hyperserotonemia” has for autism has remained a mystery.

New research by Vanderbilt University Medical Center investigators provides a physical basis for this phenomenon, which may have profound implications for the origin of some autism-associated deficits.

In an advance online publication in the Journal of Clinical Investigation, Ana Carneiro, Ph.D., and colleagues report that a well-known protein found in blood platelets, integrin beta3, physically associates with and regulates the serotonin transporter (SERT), a protein that controls serotonin availability.

Are smart people drawn to the arts or does arts training make people smarter? Or neither?

According to research led by Dr. Michael S. Gazzaniga of the University of California at Santa Barbara, children motivated in the arts develop attention skills and strategies for memory retrieval that also apply to other subject areas.

“A life-affirming dimension is opening up in neuroscience,” said Dr. Gazzaniga, “to discover how the performance and appreciation of the arts enlarge cognitive capacities will be a long step forward in learning how better to learn and more enjoyably and productively to live. The consortium’s new findings and conceptual advances have clarified what now needs to be done.”

Mutations in genes governing an important cell-signaling pathway influence human longevity, scientists at the Albert Einstein College of Medicine of Yeshiva University have found.

The report is the latest finding in the Einstein researchers’ ongoing search for genetic clues to longevity through their study that by now has recruited more than 450 Ashkenazi (Eastern European) Jews between the ages of 95 and 110. Descended from a small founder group, Ashkenazi Jews are more genetically uniform than other groups, making it easier to spot gene differences that are present.

Bacteria are ubiquitous on Earth. They've been found from the upper reaches of the atmosphere to miles below the ocean floor. Because of their ubiquity, scientists have long believed bacteria to be cosmopolitan, having similar genetic histories across the globe.

Curing cancer with 'natural' products used to be dismissed as shaman quackery but many chemotherapies that fight cancer in modern medicine are natural products or were developed on the basis of natural substances. Thus, taxanes used in prostate and breast cancer treatment are made from yew trees. The popular periwinkle plant, which grows along the ground of many front yards, is the source of vinca alkaloids that are effective, for example, against malignant lymphomas. The modern anti-cancer drugs topotecan and irinotecan are derived from a constituent of the Chinese Happy Tree.

Looking for new compounds, doctors and scientists are increasingly focusing on substances from plants used in traditional medicine. About three quarters of the natural pharmaceutical compounds commonly used today are derived from plants of the traditional medicine of the people in various parts of the world. The chances of finding new substances with interesting working profiles in traditional medicinal plants are better than in common-or-garden botany.

Computers are commonly used as tools to design and manipulate three-dimensional objects but soon they may provide people with a way to sense the texture of those objects or feel how they fit together, says the creator of a haptic, or touch-based, interface at Carnegie Mellon University.

Most haptic interfaces rely on motors and mechanical linkages to provide some sense of touch or force feedback but the device developed by Ralph Hollis, research professor in Carnegie Mellon’s Robotics Institute, uses magnetic levitation and a single moving part to give users a highly realistic experience. Users can perceive textures, feel hard contacts and notice even slight changes in position while using an interface that responds rapidly to movements.