Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago and are mainly observed in the Milky Way. But now researchers are reporting that they have uncovered more primitive stars located in neighboring dwarf galaxies. The discovery was made possible by much more detailed spectra obtained with the UVES instrument on ESO's Very Large Telescope.

"We have, in effect, found a flaw in the forensic methods used until now," says Else Starkenburg, lead researcher on the project. "Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars."
New images from NASA's Fermi Gamma-ray Space Telescope showing where supernova remnants emit radiation a billion times more energetic than visible light have brought astronomers a step closer to understanding the source of cosmic rays.

Cosmic rays consist mainly of protons that move through space at nearly the speed of light. In their journey across the galaxy, the particles are deflected by magnetic fields, which scrambles their paths and masks their origins.
Scientists have known for more than a decade that galaxies in the early universe produced many more stars than galaxies today. But what has remained unknown is why. Now, researchers writing in a recent issue of Nature say they may have an explanation for this astronomical mystery.

"[T]hree to five billion years after the Big Bang...galaxies churned out new stars at a much faster rate than they do now," said Michael Cooper, a postdoctoral Spitzer fellow at the University of Arizona's Steward Observatory.
The highest jump ever made was by Joseph Kittinger in 1960--31 km. This year, astronaut Felix Baumgartner will attempt a 36 km jump, and there is talk about Michael Fournier attempting a 40 km jump. According to medical director Jonathan Clark (via Science magazine, subscription required), jumps from this height have a variety of health risks, including nitrogen bubbling from the blood, sweat freezing on the skin, and spinning while falling -- leading to a brain hemorage.
Every galaxy we know about has a collection of black holes that can each be up to 10 times the sun’s mass. In addition to these black holes, there is one to rule them all; a supermassive black hole embedded in the heart of each galaxy, roughly one million to one billion times the mass of the sun.
It takes Saturn almost thirty years to orbit the Sun, with the opportunity to image both of its poles occurring only twice in that period. 2009 brought a unique chance for Hubble to image Saturn with the rings edge-on and both poles in view. At the same time Saturn was approaching its equinox so both poles were equally illuminated by the Sun's rays.
Yesterday a press release about a new interstellar medium map that has been published (PDF) in Astronomy and Astrophysics caught my eye. A French-American team of astronomers, combining previously published results with new data, mostly gathered through observations from the European Southern Observatory in Chile, h
The Visible and Infrared Survey Telescope for Astronomy (VISTA), the latest addition to ESO's Paranal Observatory (eso0949), has captured a dramatic new image of the Orion Nebula. The New telescope is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths.
For the first time, a team of astronomers has completed a demographic census of galaxy types at two different points in the Universe's history — in effect, creating two Hubble sequences — that help explain how galaxies form. The survey of 116 local galaxies and 148 distant galaxies indicates that the Hubble sequence six billion years ago was very different from the one that astronomers see today.
The starburst region NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us.