Banner
Fluorescence Microscopy: New 2-D Images Can Detect Cancer Risk

Portuguese researchers have developed a new method which uses images of a protein in cells to quantify...

A New Cause For Mental Disease

Astrocytes, the cells that make the background of the brain and support neurons, might be behind...

R.I.P Portuguese Science

Portuguese government shuts down half of the research units in the countryThe Portuguese funding...

Schistosomiasis- New Urine Test Could Help Millions

Schistosomiasis is a parasitic disease that infects 243million people worldwide, and kills about...

User picture.
picture for Helen Barrattpicture for Johannes Koelmanpicture for Steve Davispicture for flower 5picture for Michael Whitepicture for T. Ryan Gregory
Catarina AmorimRSS Feed of this column.

After many years as a scientist (immunology) at Oxford University I moved into scientific journalism and public understanding of science. I am still at Oxford Uni but now I write about any bio... Read More »

Blogroll
Every day we make a multitude of decisions based on the consequences of our actions; goal-orientated responses.

In an always changing environment this capacity is crucial but, because it is complex, it also requires a lot from the brain. So repeated actions, like to press the elevator button to our floor, become linked to other type of neural responses, which are automatic and so less demanding. And if necessary it is always possible to switch back to the first kind of response.
A gene called Chd1 has been identified in a Nature study as crucial for embryonic stem cell pluripotency - the ability to differentiate into any type of cell.  Chd1 seems to act by keeping the genetic material open and there poised to express any gene. Chd1 is also shown to be fundamental when reactivating differentiated tissue cells in order to create new stem cells.

The discovery has implications, not only for a better understanding of stem cells unique characteristics, but also for the process of obtaining them from tissue-specific cells avoiding all the problems associated with embryonic stem cells.
Scientists have discovered the gene behind Recessive Omodysplasia, a rare skeletal disease characterised by short-limbed dwarfism and craniofacial anomalies. The work, just published in the American Journal of Human Genetics, reports the identification on chromosome 13 of a gene - GPC6 – that is shown to be crucial for normal bone development.

The research will allow a better comprehension, as well as prevention, of the disease by permitting the screening of potential mutation carriers in pregnancy but most importantly will also help to understand better bone development and its molecular bases.
Scientists in Portugal and France managed to follow the patterns of gene expression in food-poisoning bacteria Listeria monocytogenes (L. monocytogenes) live during infection for the first time. The work about to be published in PLoS Pathogens shows how the bacterial genome shifts to better adapt to infection by activating genes involved in virulence and subversion of the host defences, as well as adaptation to the host conditions.
Helicobacter pylori (H. pylori) infection is considered one of the most important risk factors for stomach (or gastric) cancer with as much as 65% of all cases linked back to the bacteria, although exactly how this occurs is not fully clear.
Portuguese scientists discovered a new molecular mechanism that allows gamma herpes viruses to chronically infect patients and helps to explain why these patients present an abnormally high incidence of the lymphocyte (or white blood cell) cancer lymphoma, particularly when their immune system is compromised.

The research, just published in the advance online edition of The Embo Journal, reveals how these viruses mimic the host molecular machinery to shutdown NF-kB –a key regulatory protein complex involved in cell division and death – on infected lymphocytes, and how this - probably by disrupting the cells normal regulatory systems - creates the conditions for the development of lymphomas.