It is easy to marvel at Einstein's relativity theory. It is less easy to really understand relativity. At least so it seems. Understanding relativity requires abilities in predicting with confidence the outcomes of relativistic experiments. For that you need a PhD in physics. Right?
There are many super microscopes around the globe but they are not like the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). This new source has become the brightest of them all since August 2007. Some say it is more like a laser light than a flashllight in comparison with others.  

"In reaching this milestone of operating power, the Spallation Neutron Source (SNS) is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said US Department of Energy's William Brinkman. SNS achieved on September 18 a record one-megawatt power or about seven times of what is available at ISIS in UK.  
"It turns out that any optimal classical decision rule is also some Bayesian rule. In other words, even if the decision maker is not a Bayesian, he will behave as if he were!"

Frederick James, Statistical Methods in Experimental Physics
Carl Brannen is well known to the regulars of this blog. He is an independent researcher and my favourite non-professional theorist, because he gives me the hope that brilliant minds, who were diverted from the natural path of doing basic research, may return to it for good. And Carl provides us with another important proof: that institutionalized science does sometimes listen to the voice of those who have something to say regardless of who signs their monthly paycheck.
Do you remember the "e-e-gamma-gamma-met"  event ? I am sure you do not. It is an incredibly striking event that appeared toward the end of the Tevatron Run I in the CDF data. One event that was so incredibly striking, so impossible to produce through standard model processes, that many in my experiment felt sure that it was going to be the portal through which we would enter the realm of Supersymmetry, or other fancy new physics scenarios.
One half of the Nobel Prize in physics for 2009 goes to Chinese-British physicist Charles K. Kao "for groundbreaking achievements concerning the transmission of light in fibers for optical communication", and the other half is divided between Canadian Willard S. Boyle and American George E. Smith "for the invention of an imaging semiconductor circuit – the CCD sensor".
"An illustration of the confusion about the tau is provided by two editions of a popular book on particle physics by Nigel calder entitled The Key to the Universe. In the first edition Calder wrote:

Martin Perl and his colleagues detected peculiar events occurring in SPEAR. From the scene of collision an electron and a heavy electron (the well-known muon) carrying opposite electric charges were ejected at the same moment without any other detectable particles coming out. No conventional process, involving conventional particles, could account for such events.
Everyday use of a mathematical concept

The concept of probability is not alien to even the least mathematically versed among us: even those who do not remember the basic math they had in primary schools use it currently in their daily reasoning. I find the liberal use of the word "probability" (and derivates) in common language interesting, for two reasons. One, because the word has in fact a very definite mathematical connotation. And two, because the word is often used to discuss the knowledge of a system's evolution in time without a clear notion of which, among either of two strikingly different sources, is the cause of our partial or total ignorance.
Well, it is now official, so I thought I would let my blog know about it too: I am honored to announce that I was chosen to serve in the CMS Statistics Committee. Along with eight highly distinguished colleagues, I will work for at least the next two years in a group that will take care of ensuring the accuracy of all results that our 2500-strong collaboration will produce.

CMS is one of the two high-energy physics experiments designed to study the proton-proton collisions delivered by the LHC, the Large Hadron Collider at CERN in Geneva, Switzerland. The machine is expected to start data-taking in November this year.
Mathematical functions are all around us. We may not realize it but they are there! Check it out on the pictures below.

A blade of light, selected by the venetian blinds of my living room window, draws a curved, complicated, multiple-valued function on the semi-transparent orange curtains. Maybe the curve below is even more fascinating: