Fake Banner
Move Over - The Talk I Will Not Give

Last week I was in Amsterdam, where I attended the first European AI for Fundamental Physics...

Shaping The Future Of AI For Fundamental Physics

From April 30 to May 3 more than 300 researchers in fundamental physics will gather in Amsterdam...

On Rating Universities

In a world where we live hostages of advertisement, where our email addresses and phone numbers...

Goodbye Peter Higgs, And Thanks For The Boson

Peter Higgs passed away yesterday, at the age of 94. The scottish physicist, a winner of the 2013...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
It is nice to see that the Tevatron experiments are continuing to produce excellent scientific measurements well after the demise of the detectors. Of course the CDF and DZERO collaborations have shrunk in size and in available man-years for data analysis since the end of data taking, as most researchers have increased and gradually maxed their participations to
other experiments - typically the ones at the Large Hadro Collider; but a hard core of dedicated physicists remains actively involved in the analysis of the 10 inverse femtobarns of proton-antiproton collisions acquired in Run 2, in the conviction that the Tevatron data still provides a basis for scientific results that cannot be obtained elsewhere.
Did you know about that dyslectic guy with an impotence problem who once came to Fermilab ? He said he'd been advised to go there as he wanted to get a hadron.
The Super-CDMS dark-matter search has released two days ago the results from the analysis of nine months of data taking. The experiment has excellent sensitivity to weak interacting massive particles producing inelastic scattering with the Germanium in the detector.

The detector is composed of fifteen cylindrical 0.6 kg crystals stacked in groups of three, equipped with ionization and phonon detectors that are capable of measuring the energy of the signals. From that the recoil energy can be derived, and a rough estimate of WIMP candidates mass. The towers are kept at close to absolute zero temperature in the Soudan mine, where backgrounds from cosmic rays and other sources are very small.
Do you remember the CDF Dijet bump at 145 GeV? In 2010, CDF published a paper that showed how the same data sample of W + jet events where they had previously isolated the "single-lepton" WW+WZ signal also presented an intriguing excess of events in the dijet mass distribution, in a region where the background -dominated by QCD radiation produced in association with a W- fell smoothly. That signal generated some controversy within the collaboration, and a lot of interest outside of it. It could be interpreted as some signal of a new technicolor resonance !
The Y(4140) state, a resonance found in decays of the B meson to J/ψ φ K final states, is the protagonist of a long saga. Originally it was obseved by CDF in 4 inverse femtobarns of Run 2 data by Kai Yi, a very active "bump hunter" in the experiment - and I want to add, a successful one! 

Kai had to withstand a very long review process within the collaboration before the evidence for the new particle could finally be published; and the addition of more data to the analysis, one year afterwards, left many in CDF with the suspect that the particle was maybe there only in the eye of the beholder: the new data did not seem to show a clear hint of the peak seen in the first part.
I believe I am not alone in being fascinated by the ongoing debates about this or that physics experiment being on the verge of destroying the Earth. Microscopic black holes produced by mistake in particle physics experiments sinking down to the center of the Earth and slowly eating us out, small black holes used as "clean" bombs, antimatter weapons, strange-matter bits gradually engulfing everything around.

It is quite entertaining and it would be even good for physics outreach if spun the right way, but unfortunately we should not trust too much the sense of humour of our political leaders.