Fake Banner
Living At The Polar Circle

Since 2022, when I got invited for a keynote talk at a Deep Learning school, I have been visiting...

Conferences Good And Bad, In A Profit-Driven Society

Nowadays researchers and scholars of all ages and specialization find themselves struggling with...

USERN: 10 Years Of Non-Profit Action Supporting Science Education And Research

The 10th congress of the USERN organization was held on November 8-10 in Campinas, Brazil. Some...

Baby Steps In The Reinforcement Learning World

I am moving some baby steps in the direction of Reinforcement Learning (RL) these days. In machine...

User picture.
picture for Hank Campbellpicture for Patrick Lockerbypicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
Among the viable extensions of the standard model, an intriguing class of models involve the concept of a "hidden sector" of new particles only weakly coupled to the standard model one. These particles could be produced in the decay of heavy standard model particles, be invisible, but unstable, and thus soon decay back into standard model bodies, giving funny experimental signatures that our detectors could spot -if we looked for them carefully enough.
Until the second half of the nineties, when the LEP collider started to be upgraded to investigate higher centre-of-mass energies of electron-positron collisions than those until then produced at the Z mass, the Higgs boson was not the main focus of experiments exploring the high-energy frontier. The reason is that the expected cross section of that particle was prohibitively small for the comparatively low luminosities provided by the facilities available at the time. Of course, one could still look for anomalously high-rate production of final states possessing the characteristics of a Higgs boson decay; but those searches had a limited appeal.
Interaction with matter changes the neutrino mixing and effective mass splitting in a way that depends on the mass hierarchy. Consequently, results of oscillations and flavor conversion are different for the two hierarchies.
Sensitivity to the mass hierarchy appears whenever the matter effect on the 1-3 mixing and mass splitting becomes substantial. This happens in supernovae in large energy range, and in the matter of the Earth.
The Earth density profile is a multi-layer medium where the resonance enhancement of oscillations as well as the parametric enhancement of oscillations occur. The enhancement is realized in neutrino (antineutrino) channels for normal (inverted) mass hierarchy.
Preparing the documents needed for an exam for a career advancement, to a scientist like me, is something like putting order in a messy garage. Leave alone my desk, which is indeed in a horrific messy state - papers stratified and thrown around with absolutely no ordering criterion, mixed with books I forgot I own and important documents I'd rather have reissued rather than searching for them myself. No, I am rather talking about my own scientific production - pubished articles that need to be put in ordered lists, conference talks that I forgot I have given and need to be cited in the curriculum vitae, refereeing work I also long forgot I'd done, internal documents of the collaborations I worked in, students I tutored, courses I gave.
Although now widely accepted as the most natural explanation of the observed features of the universe around us, dark matter remains a highly mysterious entity to this day. There are literally dozens of possible candidates to explain its nature, wide-ranging in size from subnuclear particles all the way to primordial black holes and beyond. To particle physicists, it is of course natural to assume that dark matter IS a particle, which we have not detected yet. We have a hammer, and that looks like a nail.
It is a well-known fact that given the availability of food, we eat far more than what would be healthy for our body. Obesity has become a plague in many countries, and the fact that it correlates very tightly with a decreased life expectancy is not a random chance but the demonstrated result of increased risk of life-threatening conditions connected with excess body fat.

Yet we eat, and drink, and eat. We look like self-pleasing monkeys trained to press a button to self-administer a drug. To make matters worse, many of the foods and drinks we consume contain substances purposely added to increase our addiction. So it takes a strong will to control our body weight.