Fake Banner
Living At The Polar Circle

Since 2022, when I got invited for a keynote talk at a Deep Learning school, I have been visiting...

Conferences Good And Bad, In A Profit-Driven Society

Nowadays researchers and scholars of all ages and specialization find themselves struggling with...

USERN: 10 Years Of Non-Profit Action Supporting Science Education And Research

The 10th congress of the USERN organization was held on November 8-10 in Campinas, Brazil. Some...

Baby Steps In The Reinforcement Learning World

I am moving some baby steps in the direction of Reinforcement Learning (RL) these days. In machine...

User picture.
picture for Hank Campbellpicture for Patrick Lockerbypicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
Scientific American features an excellent article by Garrett Lisi and James Owen Weatherell, with title "A Geometric Theory of Everything". It is a rather clear explanation of the ideas behind the recent articles published by Lisi on the E8 group and how this exceptionally rich mathematical structure could embed the representation of all particles and forces of nature.
The DZERO collaboration  published a few days ago the results of their search for multi-b-quark signatures of Supersymmetry in a large dataset of proton-antiproton collisions at 1.96 TeV. The possible large coupling of higgs bosons to b-quarks makes searches with many b-quark-jets worth pursuing at the Tevatron.
The arxiv is featuring a new paper by Darien Wood, member and spokesperson of the DZERO experiment and a distinguished physicist with lots of experience in hadron collider physics. The paper is titled "The Physics Case for Extended Tevatron Running" and it is an explanation of the benefits that a Run III until 2014 will bring to our knowledge of high-energy physics.
As beautiful as they get, or even more so. It is hard to express the beauty of the event that the CMS collaboration published today. CMS, which stands for "compact muon solenoid", is one of the two main detectors operating at the CERN Large Hadron Collider (the other is ATLAS). The duo is seeking evidence for the Higgs boson, the only elementary particle predicted by the Standard Model that still awaits to be discovered.
Giorgio Chiarelli is a particle physicist. His research activity has been based largely at the Fermi laboratory near Chicago, US, at the CDF experiment. In 1994-96 he actively participated in the discovery of the top quark and in the first measurements of that particle's properties. Later, after directing the construction of a part of the new CDF detector, he moved its research interests toward the search for the Higgs boson. Currently he is a INFN research director in Pisa, where he leads the CDF-Pisa group. In the most recent years he dealt with problems connected with the communication of science.
The ATLAS collaboration has just released an important study of the sensitivity to a standard model Higgs boson. For the first time precise predictions are made for LHC running at a centre-of-mass energy of 7 TeV (but also 8 and 9 TeV are considered, given the possibility that next year the energy is bumped up a bit), and for most of the sensitive channels together.

The public document is long and detailed, and I have no time to discuss its intricacies with you here, nor do I believe that you would actually want me to. But I do want to discuss one of the most significant figures in the note. It is shown below.