Fake Banner
Shaping The Future Of AI For Fundamental Physics

From April 30 to May 3 more than 300 researchers in fundamental physics will gather in Amsterdam...

On Rating Universities

In a world where we live hostages of advertisement, where our email addresses and phone numbers...

Goodbye Peter Higgs, And Thanks For The Boson

Peter Higgs passed away yesterday, at the age of 94. The scottish physicist, a winner of the 2013...

Significance Of Counting Experiments With Background Uncertainty

In the course of Statistics for Data Analysis I give every spring to PhD students in Physics I...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
Ashay Dharwadker
is the founder and director of the Institute of Mathematics, Gurgaon, India.
He is interested in fundamental research in mathematics, particularly in algebra, topology, graph theory and their applications to computer science and high energy physics. Based upon the new proof of the four color theorem, he has developed a grand unified theory for the Standard Model and gravitation. In particular, this leads to a mathematically precise prediction of the Higgs boson mass.
Just a note here because I figured it is not clear - I am on vacation these days and, while I continue to post at a regular frequency, I am much more erratic than usual with answering comments in the threads. I would like this to be clear, because I usually do make a point of answering all comments that lend themselves to be answered.

With a slow connection and the need to spend as much time as possible swimming  in the blue waters of Elafonisos, this is bound to be a side effect. I will be back in regular blogging mood by August 10th.
While a thousand physicists gather in hot Paris and listen to talk after talk, I am confined in a small island of the Mediterranean, trying to relax and gather my ideas for the next few aggressive months of data analysis, a course of subnuclear physics in the fall, and of course, more reckless rumor-mongering!
The CMS collaboration at the LHC collider has just produced its very first results on the production of Upsilon particles, with 280 inverse nanobarns of proton-proton collisions at 7 TeV center-of-mass energy. I wish to discuss these results here, to explain what is interesting in these very early measurements, and what we can expect to learn in the future from them.

The production of resonances decaying to muon pairs is one of the first things one wants to study when a hadron collider starts operation. This is because these particles are extremely well known, so one immediately figures out whether the detector is working properly, what is the resolution on the momenta of the reconstructed particles, etcetera.
I am preparing a disclaimer to be added to the bottom of my posts here. The problem I am trying to solve -at least in part- is that the colleagues in the scientific collaborations I work for apparently fear that I be identified, by science reporters or other media agents, as an official source of information from those experiments.
The Atlas collaboration made public, just in time for the 2010 ICHEP conference in Paris, the projected reach of their searches for standard model Higgs bosons. This is a whole set of interesting new results which, although necessarily still based on simulations, tell us a lot about what we might see toward the end of next year at the LHC.

Here I will just flash a couple of the results, because the plentiful online documentation that ATLAS provided makes it a worthless exercise on my part to just echo it here. However, maybe I can comment the most relevant plots for those of you too lazy to browse the information-thick ATLAS pages.