Supersymmetry Is About To Be Discovered, Kane Says

While in the process of fact-checking information that is contained in the book I am finalizing...

Anomaly! - A Different Particle Physics Book

I was very happy today to sign a contract with an international publisher that will publish a book...

The Mysterious Z Boson Width Measurement - CDF 1989

As I am revising the book I am writing on the history of the CDF experiment, I have bits and pieces...

A 2 Meter Piece Of Junk Falling From Space

In a bit less than two days an orbiting object known with the peculiar name of WT1190F - but I'd...

User picture.
picture for Hank Campbellpicture for Sascha Vongehrpicture for Bente Lilja Byepicture for Johannes Koelmanpicture for Georg von Hippelpicture for Josh Witten
Tommaso DorigoRSS Feed of this column.

I am an experimental particle physicist working with the CMS experiment at CERN. In my spare time I play chess, abuse the piano, and aim my dobson telescope at faint galaxies.... Read More »

Among the many things that CMS and ATLAS physicists are looking forward to checking up, using the data that the LHC is starting to deliver from 13 TeV proton-proton collisions, one is the WH resonance signal that CMS found in a recent analysis. Mind you, "signal" here is a misnomer: what was seen was most probably a insignificant fluctuation of the background; yet we must keep our mind open to interpretation changes.

The search I am talking about is one CMS did for boosted Higgs bosons recoiling against boosted W bosons, in a "back-to-back" topology (paper is here).
The light we receive from the sun is composed of all visible frequencies, among others, and it therefore appears white to our natural detection system - the human eye. Apparently, evolution caused us to develop a vision which works best at the center of the frequency spectrum emitted by the Sun. 

That notwithstanding, I am sure that if you ask the question "what colour is the Sun" to the average Joe, you will get an equal share of "white" and "yellow", and maybe some "red" answers. Besides, who among us has never painted a red Sun in a blue sky as a child ? 

The second infn school of statistics took place this week in the nice "green island" of Ischia, in the gulf of Naples, Italy. Organized by the INFN section of Naples, the school aims at training Ph.D. students and post-graduates in the foundations and the applications of the statistical methods most used nowadays in particle physics, nuclear physics, and astrophysics.

Yesterday I posed a question - Are the first collisions recorded by the LHC running at 13 TeV the highest-energy ever produced by mankind with subatomic particles ? It was a tricky one, as usual, meant to think about the matter.

I received several tentative answer in the comments thread, and thus answered there. I paste the text here as it is of some interest to some of you and I wish it does not go overlooked.


Dear all, 
The LHC has finally started to produce 13-TeV proton-proton collisions!

The picture below shows one such collision, as recorded by the CMS experiment today. The blue boxes show the energy recorded in the calorimeter, which measures particle energy by "destroying" them as they interact with the dense layers of matter that this device is made up of; the yellow curves show tracks reconstructed by the ionization deposits of charged particles left in the silicon detector layers of the inner tracker. 
The European Union has released some data on the latest call for applications for ITN grants. These are "training networks" where academic and non-academic institutions pool up to provide innovative training to doctoral students, in the meanting producing excellent research outputs.