Another Collider Physics Source

Just a short entry to mention that the blog of my colleague Michael Schmitt, a professor at Northwestern...

New CMS Results

The Large Hadron Collider at the CERN laboratories in Geneva is currently in shutdown, finalizing...

The Quote Of The Week - Shocked And Disappointed

"Two recent results from other experiments add to the excitement of Run II. The results from Brookhaven's...

ECFA Workshop: Planning For The High Luminosity LHC

I am spending a few days in Aix Les Bains, a pleasant lakeside resort in the French southwest,...

User picture.
picture for Hank Campbellpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Johannes Koelmanpicture for Georg von Hippelpicture for Josh Witten
Tommaso DorigoRSS Feed of this column.

I am an experimental particle physicist working with the CMS experiment at CERN. In my spare time I play chess, abuse the piano, and aim my dobson telescope at faint galaxies.... Read More »

This morning at the ICNFP 2014 conference in Kolympari (Crete) the floor was taken by Abdelhak Djouadi, who gave a very nice overview of the theoretical implications of the Higgs boson discovery, especially exploring the status of Supersymmetry models.

Djouadi explained how even if the average mass of sparticles is being pushed up in surviving models of Supersymmetry -both because of the negative result of direct searches and because of the effect of hardwiring in the theoretical models the knowledge of a "heavy" lightest scalar particle, which sits at 125 GeV- there is reason to be optimistic. He explained that for stop quarks, it is the geometric mean of their masses that has to be high, but the lightest one may be laying well below the TeV.

Yesterday I gave a lecture at the 3rd International Conference on New Frontiers in Physics, which is going on in kolympari (Crete). I spoke critically about the five-sigma criterion that is nowadays the accepted standard in particle physics and astrophysics for discovery claims.

My slides, as usual, are quite heavily written, which is a nuisance if you are sitting at the conference trying to follow my speech, but it becomes an asset if you are reading them by yourself post-mortem. You can find them here (pdf) and here (ppt) .

This is just a short update on the saga of the anomalous excess of W-boson-pair production that the ATLAS and CMS collaborations have reported in their 7-TeV and 8-TeV proton-proton collision data. A small bit of information which I was unaware of, and which can be added to the picture.

This is just a short post to report about a useful paper I found by preparing for a talk I will be giving next week at the 3rd International Conference on New Frontiers in Physics, in the pleasant setting of the Orthodox Academy of Crete, near Kolympari.

My talk will be titled "Extraordinary Claims: the 0.000029% Solution", making reference to the 5-sigma "discovery threshold" that has become a well-known standard for reporting the observation of new effects or particles in high-energy physics and astrophysics.
Many new particles and other new physics signals claimed in the last twenty years were later proven to be spurious effects, due to background fluctuations or unknown sources of systematic error. The list is long, unfortunately - and longer than the list of particles and effects that were confirmed to be true by subsequent more detailed or more statistically-rich analysis.
A timely article discussing the hot topic of the production rate of pairs of vector bosons in proton-proton collisions has appeared on the Cornell arxiv yesterday. As you might know, both the ATLAS and CMS collaborations, who study the 8-TeV (and soon 13-TeV) proton-proton collisions delivered by the Large Hadron Collider at CERN, have recently reported an excess of events with two W bosons. The matter is discussed in a recent article here.