Banner
Bang! Meet The Highest-Energy Hadron Collision Ever Imaged!

The 13 TeV data from LHC collisions taken this summer is quickly going through analysis programs...

(Well)-Paid PhD Position In Physics Offered In Padova, Italy

Are you a post-lauream student in Physics, interested in pursuing a career in particle physics...

New Results From The LHC At 13 TeV!

Well, as some of you may have heard, the restart of the LHC has not been as smooth as we had hoped...

Marek Karliner: Not A Pentaquark, But A Molecule - As He And Rosner Predicted

The reported observation of a resonant state of a J/psi meson and a proton in the decay of the...

User picture.
picture for Bente Lilja Byepicture for Hank Campbellpicture for Sascha Vongehrpicture for Johannes Koelmanpicture for Georg von Hippelpicture for Josh Witten
Tommaso DorigoRSS Feed of this column.

I am an experimental particle physicist working with the CMS experiment at CERN. In my spare time I play chess, abuse the piano, and aim my dobson telescope at faint galaxies.... Read More »

Blogroll
Ashay Dharwadker
is the founder and director of the Institute of Mathematics, Gurgaon, India.
He is interested in fundamental research in mathematics, particularly in algebra, topology, graph theory and their applications to computer science and high energy physics. Based upon the new proof of the four color theorem, he has developed a grand unified theory for the Standard Model and gravitation. In particular, this leads to a mathematically precise prediction of the Higgs boson mass.
Just a note here because I figured it is not clear - I am on vacation these days and, while I continue to post at a regular frequency, I am much more erratic than usual with answering comments in the threads. I would like this to be clear, because I usually do make a point of answering all comments that lend themselves to be answered.

With a slow connection and the need to spend as much time as possible swimming  in the blue waters of Elafonisos, this is bound to be a side effect. I will be back in regular blogging mood by August 10th.
While a thousand physicists gather in hot Paris and listen to talk after talk, I am confined in a small island of the Mediterranean, trying to relax and gather my ideas for the next few aggressive months of data analysis, a course of subnuclear physics in the fall, and of course, more reckless rumor-mongering!
The CMS collaboration at the LHC collider has just produced its very first results on the production of Upsilon particles, with 280 inverse nanobarns of proton-proton collisions at 7 TeV center-of-mass energy. I wish to discuss these results here, to explain what is interesting in these very early measurements, and what we can expect to learn in the future from them.

The production of resonances decaying to muon pairs is one of the first things one wants to study when a hadron collider starts operation. This is because these particles are extremely well known, so one immediately figures out whether the detector is working properly, what is the resolution on the momenta of the reconstructed particles, etcetera.
I am preparing a disclaimer to be added to the bottom of my posts here. The problem I am trying to solve -at least in part- is that the colleagues in the scientific collaborations I work for apparently fear that I be identified, by science reporters or other media agents, as an official source of information from those experiments.
The Atlas collaboration made public, just in time for the 2010 ICHEP conference in Paris, the projected reach of their searches for standard model Higgs bosons. This is a whole set of interesting new results which, although necessarily still based on simulations, tell us a lot about what we might see toward the end of next year at the LHC.

Here I will just flash a couple of the results, because the plentiful online documentation that ATLAS provided makes it a worthless exercise on my part to just echo it here. However, maybe I can comment the most relevant plots for those of you too lazy to browse the information-thick ATLAS pages.