Fake Banner
On Rating Universities

In a world where we live hostages of advertisement, where our email addresses and phone numbers...

Goodbye Peter Higgs, And Thanks For The Boson

Peter Higgs passed away yesterday, at the age of 94. The scottish physicist, a winner of the 2013...

Significance Of Counting Experiments With Background Uncertainty

In the course of Statistics for Data Analysis I give every spring to PhD students in Physics I...

The Analogy: A Powerful Instrument For Physics Outreach

About a month ago I was contacted by a colleague who invited me to write a piece on the topic of...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
This morning I had a funny dream, and as I woke up at the end of it and watched the clock with the only eye I had managed to open, I realized it was not yet really time to wake up. On the other hand, I really liked the dream I had had: it was quite vivid and detailed, plus it lent an occasion for a blog post!

Hence I crawled out of the bed and reached for the nearest laptop in order to download the contents of my mind before it made room for something else and the dream got lost forever.
Goodbye CDF

Goodbye CDF

Jul 02 2013 | comment(s)

Like HAL 9000 in the wonderful movie "2001 -  the space odyssey", the CDF detector is being disassembled piece by piece, losing its functionality bit by bit, and turning from one of the most complex electronics systems ever built into a pile of junk in the course of a long, slow process. The central part of the detector has been transported out of the collision hall on rails, into the assembly hall, which is now serving the opposite purpose. If you ever visited Fermilab, the assembly hall is inside the big orange building you drove by as you got to the Wilson Hall from the east entrance.
Jacques Distler is a Professor of Physics at the University of Texas at Austin, and a distinguished theorist, as well as a physics blogger. Along with experimentalist Gordon Watts (who covered $250) he took my $1000 bet that the LHC would not discover new physics in its first 10/fb of proton-proton collision data. I discussed my take on the bet in a previous post; here Jacques explains his point of view, why he took the bet, and what he thinks of the present situation with new physics searches at the high-energy frontier.
The article below has appeared today at Distler's blog, and I reproduce it here with his permission.

In September 2006 I was in Ponta Delgada, the main town of the island of San Miguel in the Azores, for a physics conference where I was presenting results of the CDF experiment.

I remember listening to a very nice talk by Guido Martinelli, who was discussing the status of flavour physics, and getting rather depressed at the view of a very consistent picture of agreement between B physics observables and Standard Model predictions. This came at a moment when the CDF experiment had been probing the high-energy frontier with very detailed measurements, none of which appeared to show even the smallest glimpse of a departure from model predictions.
A thick paper by the ATLAS collaboration has been published by the Cornell Arxiv today. It is going to become a reference to all ATLAS analyses searching for new phenomena at high energy, or studies of boosted top quarks or vector bosons; and a good example of the new techniques that make sense of the energy distribution inside high-momentum jets.
LHCb, one of the two "satellite" experiments at the Large Hadron Collider, is a detector focusing on the production of B hadrons in proton-proton collisions. It does so by looking at only one side of the collision point, which is showered by the majority of the debris produced when one very-high-momentum parton inside the proton coming from the other side hits a moderately or low-momentum parton in the other proton coming from the LHCb side of the collision region.
A sketch of the LHCb layout is shown below.


(In the picture you can see the various detector elements seen from a side. The interaction point is on the left.)