Fake Banner
Living At The Polar Circle

Since 2022, when I got invited for a keynote talk at a Deep Learning school, I have been visiting...

Conferences Good And Bad, In A Profit-Driven Society

Nowadays researchers and scholars of all ages and specialization find themselves struggling with...

USERN: 10 Years Of Non-Profit Action Supporting Science Education And Research

The 10th congress of the USERN organization was held on November 8-10 in Campinas, Brazil. Some...

Baby Steps In The Reinforcement Learning World

I am moving some baby steps in the direction of Reinforcement Learning (RL) these days. In machine...

User picture.
picture for Hank Campbellpicture for Patrick Lockerbypicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
In a bit less than two days an orbiting object known with the peculiar name of WT1190F - but I'd like to rename it as WTF 1190 for obvious reasons - is expected to fall on Earth. The object was discovered by the Catalina Sky Survey in 2013 and little is known about its origin. It has a low density and makes a very eccentric revolution around us every three weeks. 
Below is a picture taken by the University of Hawaii 2.2 meter telescope in October. The object is observed as a bright spot that shows a relative motion with respect to fixed stars.



Top quarks, the heaviest known elementary particles, were discovered in 1995 by the CDF and DZERO collaborations, when the two Fermilab experiments spotted the decay of  top-antitop pairs produced by strong interactions in the proton-antiproton collisions provided by the Tevatron collider at 1.8 TeV center-of-mass energy. 
This week I am in Warsaw, where I attend the XI workshop on particle correlations and femtoscopy. I am actually here to give a seminar on statistical methods in particle physics next Thursday, but of course I am also going to try and deepen my understanding of the field of investigations of heavy ion collisions.

Jan Pluta, one of the old-schoolers of the field, gave an introductory talk this morning. It was titled "A brief history of femtoscopy and particle correlations - a personal view". I am reporting below some impressions from his presentation.

What is femtoscopy ? Jan started by warning that he would indeed only give a personal view of the history of the field, and that the view of others may be very different.
Recurrently, uninformed journalists re-discover the h-index and decide to create their own list of the "top scientists" in their country. The most zealous also draw some summary statistics from the list, and then venture to speculate wildly about it. Alas, it's a pattern I've seen a few times now.

The latest is an article which somebody posted on my Facebook column. It is uninteresting to see what conclusions are drawn from the graphs and lists published there, as the data are quite incomplete - in the h-index-ordered list of Italian researchers I do not appear, for one, but similarly do not dozens of top scientists who have even higher h-indices.

As I am spending my time these days selecting candidates for early-stage researcher positions in the EU network I am coordinating, I am reminded of my own experience as a participant to job interviews from the other side of the table. The text below tells the story of my interviews for a post-doctoral position in 1998. Enjoy! 

----

A longtime follower of this blog, Tony Smith, pointed out to me today this arxiv paper published three days ago. In it, CMS data from Run 1 of the LHC are used to speculate that there might be a second Higgs boson hiding in the data at a mass of about 145 GeV. Check out the two graphs that they produce.
The first one, shown below, is their own interpretation of the four-lepton invariant mass from CMS data and background in the H-->ZZ--> four lepton final state: